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Enriched basis

ΦN+K = {φn}N
n=1︸ ︷︷ ︸

conventional basis

∪ {ψk}K
k=1︸ ︷︷ ︸

extra functions

Extra functions capture known features of function to be approximated
→ expert-driven approximation

▶ Singular behaviour
▶ Oscillatory behaviour
▶ . . .
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Example: lightning approximation

Expert knowledge: solution exhibits corner singularities

f(z) ≈ r(z) =
N∑

n=0
bnz

n +
K∑

k=1

ak

z − pk

↓
contains branch

point singularities

↓
smooth term

↓
clustered poles

[Gopal and Trefethen, 2019], [Brubeck and Trefethen, 2022], [Herremans, Huybrechs, and Trefethen, 2023]
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Enriched approximation scheme

ΦN+K = {φn}N
n=1︸ ︷︷ ︸

conventional basis

∪ {ψk}K
k=1︸ ︷︷ ︸

extra functions

Approximation
problem Algorithm

how to approximate a function in
a redundant approximation set

how to efficiently compute the
approximation by exploiting structure
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1 Approximation problem

Find
arg min
f̂∈HN+K

∥∥∥f − f̂
∥∥∥

H

with HN+K = span(ΦN+K) ⊂ H
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1 Approximation problem

Find
arg min
f̂∈HN+K

∥∥∥f − f̂
∥∥∥

H

with HN+K = span(ΦN+K) ⊂ H

In practice we only have access to limited information
MM : f 7→ {ξm(f)}M

m=1 and the discrete error MM (f − f̂ )
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1 Approximation problem

Find
arg min
f̂∈HN+K

∥∥∥f − f̂
∥∥∥

H

with HN+K = span(ΦN+K) ⊂ H

In practice we only have access to limited information
MM : f 7→ {ξm(f)}M

m=1 and the discrete error MM (f − f̂ )

In what follows, I use ∥f∥2
M = ∥MMf∥2 =

∑M
m=1 |ξm(f)|2
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1 Discrete approximation in enriched bases

Least squares approximation P

Pf = arg min
f̂∈HN+K

∥∥∥f − f̂
∥∥∥

M

∥f − Pf∥M ≤ inf
x∈CN+K

{ ∥f − ΦN+K x∥M }
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1 Influence of the representation and finite precision

Using the enriched basis, Pf = ΦN+K c with

Ac ≈ b

where (A)m,i = ξm(ϕi), (b)m = ξm(f)

[Adcock and Huybrechs, 2019]

The coefficients c are increasingly underdetermined

ϵ

→ “regularized approximation space”
(truncated SVD at a threshold ϵ)

Hϵ
ξ,N+K ⊆ HN+K
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1 Discrete approximation in enriched bases

Least squares approximation P

Pf = arg min
f̂∈HN+K

∥∥∥f − f̂
∥∥∥

M

∥f − Pf∥M ≤ inf
x∈CN+K

{ ∥f − ΦN+K x∥M }

Regularized least squares approximation Pϵ

Pϵf = arg min
f̂∈Hϵ

ξ,N+K

∥∥∥f − f̂
∥∥∥

M

∥f − Pϵf∥M ≤ inf
x∈CN+K

{ ∥f − ΦN+K x∥M + ϵ ∥x∥2 }

[Coppé, Huybrechs, Matthysen, and Webb, 2020]
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1 Example: lightning approximation

∥f − Pϵf∥M ≤ inf
x∈CN+K

{ ∥f − ΦN+K x∥M + ϵ ∥x∥2 }

Approximation of
√
x on [0, 1]:
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[Herremans, Huybrechs, and Trefethen, 2023]
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1 Approximation error in enriched bases

What does ∥f − Pϵf∥M tell us about ∥f − Pϵf∥H?

[Adcock and Huybrechs, 2020]

∥f − Pϵf∥H

≤ inf
x∈CN+K

{ ∥f − ΦN+K x∥H + 1√
Aξ,N+K

( ∥f − ΦN+K x∥M + ϵ ∥x∥2 ) }
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1 Approximation error in enriched bases

What does ∥f − Pϵf∥M tell us about ∥f − Pϵf∥H?

[Adcock and Huybrechs, 2020]

∥f − Pϵf∥H

≤ inf
x∈CN+K

{ ∥f − ΦN+K x∥H + 1√
Aξ,N+K

( ∥f − ΦN+K x∥M + ϵ ∥x∥2 ) }

where
Aξ,N+K ∥f∥2

H ≤ ∥f∥2
M ∀f ∈ HN+K

→ choose MM such that Aξ,N+K is bounded from below
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1 Example: lightning approximation

[Cohen and Migliorati, 2017]

For H = L2, you can compute a (weighted) sample distribution based
on ΦD which is near-optimal in the sense that

Aξ,D ≥ 1/2 using only M = O(D logD) random samples

with high probability
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1 Example: lightning approximation

[Cohen and Migliorati, 2017]

For H = L2, you can compute a (weighted) sample distribution based
on ΦD which is near-optimal in the sense that

Aξ,D ≥ 1/2 using only M = O(D logD) random samples

with high probability

Experiment
(near-)optimal sampling distribution
for 20 lightning poles

→ many samples needed close to the
singularity 10-15 10-10 10-5 100

100

105

1010

1015

1/x
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Enriched approximation scheme

ΦN+K = {φn}N
n=1︸ ︷︷ ︸

conventional basis

∪ {ψk}K
k=1︸ ︷︷ ︸

extra functions

Approximation
problem Algorithm

how to approximate a function in
a redundant approximation set

how to efficiently compute the
approximation by exploiting structure
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2 AZ algorithm [Coppé, Huybrechs, Matthysen, and Webb, 2020]

Goal
efficient computation of Ac ≈ b A : CN → CM

Idea

assume efficient solver Z∗ : CM → CN exists for a subset of problems

Ac = v for c = Z∗v, ∀ v ∈ V ⊂ Col(A)y V = Null(I − AZ∗)

only perform least squares fitting in Col(A) \ V

(I −AZ∗)Ac̃ ≈ (I −AZ∗)b rank((I − AZ∗)A) ≤ rank(A) − dim(V )

comprehensive algebraic + analytic interpretation [Herremans and Huybrechs, 2023]
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2 AZ algorithm [Coppé, Huybrechs, Matthysen, and Webb, 2020]

1 (I −AZ∗)Ac1 ≈ (I −AZ∗)b new least squares problem

2 c2 = Z∗(b −Ac1) efficient solver

3 c = c1 + c2

▶ Efficiency
low rank can be exploited via randomized NLA
→ A and Z∗ should have fast matrix-vector products

▶ Accuracy
the system Ac ≈ b is only solved approximately
→ error can grow with a factor ∥I −AZ∗∥2
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2 Structure of the least squares problem

≈
structured


A11

{φn}N
n=1 {ψk}K

k=1

MN samples

MK samples

A c b
index of singular value

MN samples → linked to conventional basis, structured
MK samples → linked to extra functions, unstructured
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2 AZ algorithm for enriched bases [Herremans and Huybrechs, 2023]

Efficient solver Z∗
11 : CMN → CN generally exists for approximation in

conventional basis

Example: Z∗
11 = A−1

11

structured

A11

{φn}N
n=1 {ψk}K

k=1

MN

MK

A

structured

Z*11

{φn}N
n=1

{ψk}K
k=1

MN MK

Z*

0

00 0

0 0

{φn}N
n=1 {ψk}K

k=1

MN

MK

(I − AZ*)A

12 Efficient Approximation in Enriched Bases Astrid Herremans



2 AZ algorithm for enriched bases [Herremans and Huybrechs, 2023]

▶ constructing the system matrix: O(cost(Z∗
11)K) flops

▶ solving the new least squares problem: O(MKK
2) flops

↔ solving the original system: O(M(N +K)2)

structured

A11

{φn}N
n=1 {ψk}K

k=1

MN

MK

A

structured

Z*11

{φn}N
n=1

{ψk}K
k=1

MN MK

Z*

0

00 0

0 0

{φn}N
n=1 {ψk}K

k=1

MN

MK

(I − AZ*)A
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2 Example: approximation of Green’s function

Green’s function of the 2D gravity Helmholtz equation

G(x,y) = A(x,y) 1
log |x − y|

+B(x,y)

Approximate with polynomials + weighted polynomials

ΦN+K = {φn(x,y)}N
n=1 ∪

{ 1
log |x − y|

φk(x,y)
}K

k=1

Experiment
▶ parametrise both x = γ(sx) and y = γ(sy) on a semicircle
▶ use tensor-product Chebyshev polynomials

{φn}
√

N×
√

N
n=1 = {Ti(sx)Tj(sy)}(

√
N−1,

√
N−1)

i,j=(0,0)
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2 Example: approximation of Green’s function

MN = 4N,MK = 0
squares: Chebyshev approximation (K = 0)
dots: Chebyshev + weighted
Chebyshev approximation (K = 52)
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Main conclusions

Approximation
problem Algorithm

how to approximate a function in
a redundant approximation set

how to efficiently compute the
approximation by exploiting structure

▶ regularization makes the
approximation space smaller

▶ non-standard approximation
spaces require non-standard
samples

▶ AZ algorithm combines least
squares fitting with a fast solver

▶ AZ algorithm for enriched bases
is efficient when N ≫ K
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