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Enriched basis

_ N K
Pyik = {ontn=1 U {¥r}im
——— ———
conventional basis extra functions

Extra functions capture known features of function to be approximated
— expert-driven approximation

> Singular behaviour
> Oscillatory behaviour
>
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Example: lightning approximation

Expert knowledge: solution exhibits corner singularities

N K
a

f) o~ o) = b o+ Y

n—0 =1 % Pk

i 1 +

contains branch smooth term  clustered poles
point singularities

[Gopal and Trefethen, 2019], [Brubeck and Trefethen, 2022], [Herremans, Huybrechs, and Trefethen, 2023]
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Enriched approximation scheme

_ N K
Pnix = {ontn=1 U {¥}i=
—— ——
conventional basis extra functions

how to approximate a function in how to efficiently compute the
a redundant approximation set approximation by exploiting structure
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Enriched approximation scheme

_ N K
Pnix = {ontn=1 U {¥}i=
—— ——
conventional basis extra functions

Algorithm
how to approximate a function in how to efficiently compute the
a redundant approximation set approximation by exploiting structure
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1  Approximation problem

Find

arg min Hf fH
feHN K

with Hyx = span(®nix) CH
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1  Approximation problem

Find
arg min Hf fH
feHN K

with Hyx = span(®nix) CH

In practice we only have access to limited information
My fe L& ()M, and the discrete error My (f — f)
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1  Approximation problem

Find
arg min Hf fH
feHN K

with Hyx = span(®nix) CH

In practice we only have access to limited information
My fe L& ()M, and the discrete error My (f — f)

In what follows, | use [|f]|3; = [|[Mafl* = SM_, |60(F)]?
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1 Discrete approximation in enriched bases

Least squares approximation P

Pf = argmin Hf f”
feHn,

1 =Pfllyy = _inf NS = Pxvrrcxllyy )

ECN+K
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1 Influence of the representation and finite precision
Using the enriched basis, Pf = ® x4k ¢ with
Ac~b

where (A)m; = &m (i), (B)m = &m(f)

[Adcock and Huybrechs, 2019]
The coefficients ¢ are increasingly underdetermined

10*

— “regularized approximation space”

0 \ (truncated SVD at a threshold ¢)
: ' €
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1 Discrete approximation in enriched bases

Least squares approximation P

Pf = argmin Hf f”
feHn,

1 =Pfllyy = _inf NS = Pxvrrcxllyy )

ECN+K

Regularized least squares approximation P¢

Pf = argmin Hf fH

fGHg N+K

1f =P flar < __inf LIS = @xverexllar +ellxl, )

[Coppé, Huybrechs, Matthysen, and Webb, 2020]
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1 Example: lightning approximation

1f=Pfllyy < inf {If = Onixx|y +ellxly}

xeCN+K

Approximation of v/z on [0,1]:
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[Herremans, Huybrechs, and Trefethen, 2023]
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1  Approximation error in enriched bases

What does || f — P¢f]|, tell us about || f — P f|;,?

[Adcock and Huybrechs, 2020]

1f =P fllx
. 1
< xegfl"f‘*'K{ |f — Pnir x|y + m (If = @nrxlly +elxly) }
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1  Approximation error in enriched bases

What does || f — P¢f]|, tell us about || f — P f|;,?

[Adcock and Huybrechs, 2020]

1f =P fllx
. 1
< xegfl"f‘*'K{ |f — Pnir x|y + m (If = @nrxlly +elxly) }
where

Aenir I fll < I3 Vf € Hyex

— choose M such that A¢ n4k is bounded from below
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1 Example: lightning approximation

[Cohen and Migliorati, 2017]

For H = L?, you can compute a (weighted) sample distribution based
on ®p which is near-optimal in the sense that

A¢.p > 1/2 using only M = O(Dlog D) random samples

with high probability
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1 Example: lightning approximation

[Cohen and Migliorati, 2017]

For H = L?, you can compute a (weighted) sample distribution based
on ®p which is near-optimal in the sense that

A¢.p > 1/2 using only M = O(Dlog D) random samples

with high probability

10" N
Experiment
(near-)optimal sampling distribution ~ 10®
for 20 lightning poles . \\\\}/x
— many samples needed close to the 100
singularity 1071 1070 10° 10°

distance to singularity
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Enriched approximation scheme

_ N K
Pnix = {ontn=1 U {¥}i=
—— ——
conventional basis extra functions

Approximation

problem
how to approximate a function in how to efficiently compute the
a redundant approximation set approximation by exploiting structure
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AZ algorithm [Coppé, Huybrechs, Matthysen, and Webb, 2020]

2
Goal

efficient computation of Ac =~ b A:CN M

Idea
assume efficient solver Z* : CM — C exists for a subset of problems
Ac=vforc=Z"v, Vv eV cCol(4)
l V = Null(I — AZ*)
only perform least squares fitting in Col(A4) \ V
(I —AZ")Ae~ (I — AZ")b rank((I — AZ*)A) < rank(4) — dim(V)

comprehensive algebraic + analytic interpretation [Herremans and Huybrechs, 2023]
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2 AZ algorithm [Coppé, Huybrechs, Matthysen, and Webb, 2020]

1 (I = AZ*)AC;[ ~ (I = AZ*)b new least squares problem
2 Ccg= z* (b — Acl) efficient solver

3 c=c1+c2

> Efficiency
low rank can be exploited via randomized NLA
— A and Z* should have fast matrix-vector products

» Accuracy
the system Ac = b is only solved approximately
— error can grow with a factor ||[I — AZ*|,
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2  Structure of the least squares problem

(o A

structured

102
M, samples A] 1

Q

My samples

oo @ee mome

index of singular value

Mp samples — linked to conventional basis, structured
My samples — linked to extra functions, unstructured
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2  AZ algorithm for enriched bases [terremans and Huybrechs, 2023]

Efficient solver Zj, : CMN — CN generally exists for approximation in
conventional basis

Example: Z3 = Ay
(o)1 VAl (o)1, (Al
MK
structured N My
A (ol structure
My (Wk)kK:l My
A Vs (I — AZ%)A
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2  AZ algorithm for enriched bases [terremans and Huybrechs, 2023]

> constructing the system matrix: O(cost(Z7,)K) flops
> solving the new least squares problem: O(MgK?) flops

< solving the original system: O(M (N + K)?)

(o) ) (o (wk,
MK

structured

My

structured

All

My (Wk}]l((:l My

A 7% (I — AZ)A
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2 Example: approximation of Green’s function

Green's function of the 2D gravity Helmholtz equation

1

G(x,y) = A(X,Y)m +

B(x,y)

Approximate with polynomials + weighted polynomials
Dk = n 1 "
N+ = {en(x,¥) =1 U {bg — sok(x,y)}k_l
Experiment
> parametrise both x = ~(s;) and y = v(s,) on a semicircle
> use tensor-product Chebyshev polynomials

VN-1,VN-
{on YN = {Ti(s0) Ty ()} o 5 N
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2 Example: approximation of Green’s function

My = 4N, My =0

squares: Chebyshev approximation (K = 0) o
dots: Chebyshev + weighted
Chebyshev approximation (K = 52)
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Main conclusions

how to approximate a function in how to efficiently compute the
a redundant approximation set approximation by exploiting structure
> regularization makes the > AZ algorithm combines least
approximation space smaller squares fitting with a fast solver
» non-standard approximation » AZ algorithm for enriched bases
spaces require non-standard is efficient when N > K

samples
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