KU LEUVEN

Efficient Approximation in Enriched Bases

Astrid Herremans jointly with Daan Huybrechs and Lloyd N. Trefethen

September 21, 2023

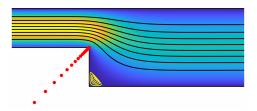
Enriched basis

$$\Phi_{N+K} = \underbrace{\left\{\varphi_n\right\}_{n=1}^N}_{\text{conventional basis}} \ \cup \ \underbrace{\left\{\psi_k\right\}_{k=1}^K}_{\text{extra functions}}$$

Extra functions capture known features of function to be approximated \rightarrow expert-driven approximation

- Singular behaviour
- Oscillatory behaviour
- **.**..

Example: lightning approximation



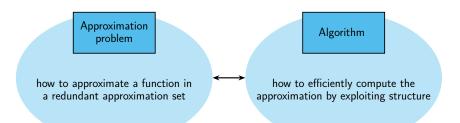
Expert knowledge: solution exhibits corner singularities

point singularities

[Gopal and Trefethen, 2019], [Brubeck and Trefethen, 2022], [Herremans, Huybrechs, and Trefethen, 2023]

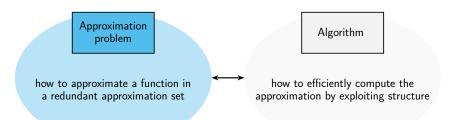
Enriched approximation scheme

$$\Phi_{N+K} = \underbrace{\{\varphi_n\}_{n=1}^N}_{\text{conventional basis}} \cup \underbrace{\{\psi_k\}_{k=1}^K}_{\text{extra functions}}$$



Enriched approximation scheme

$$\Phi_{N+K} = \underbrace{\{\varphi_n\}_{n=1}^N}_{\text{conventional basis}} \cup \underbrace{\{\psi_k\}_{k=1}^K}_{\text{extra functions}}$$



1 Approximation problem

Find

$$\underset{\hat{f} \in H_{N+K}}{\operatorname{arg\,min}} \left\| f - \hat{f} \right\|_{\mathcal{H}}$$

with
$$H_{N+K} = \mathsf{span}(\Phi_{N+K}) \subset \mathcal{H}$$

1 Approximation problem

Find

$$\underset{\hat{f} \in H_{N+K}}{\operatorname{arg\,min}} \left\| f - \hat{f} \right\|_{\mathcal{H}}$$

with
$$H_{N+K} = \operatorname{span}(\Phi_{N+K}) \subset \mathcal{H}$$

In practice we only have access to limited information $\mathcal{M}_M: f \mapsto \{\xi_m(f)\}_{m=1}^M$ and the discrete error $\mathcal{M}_M(f-\hat{f})$

1 Approximation problem

Find

$$\underset{\hat{f} \in H_{N+K}}{\operatorname{arg\,min}} \left\| f - \hat{f} \right\|_{\mathcal{H}}$$

with
$$H_{N+K} = \operatorname{span}(\Phi_{N+K}) \subset \mathcal{H}$$

In practice we only have access to limited information $\mathcal{M}_M: f \mapsto \{\xi_m(f)\}_{m=1}^M$ and the discrete error $\mathcal{M}_M(f-\hat{f})$

In what follows, I use $\|f\|_M^2 = \|\mathcal{M}_M f\|^2 = \sum_{m=1}^M |\xi_m(f)|^2$

1 Discrete approximation in enriched bases

Least squares approximation $\mathcal P$

$$\mathcal{P}f = \underset{\hat{f} \in H_{N+K}}{\operatorname{arg\,min}} \left\| f - \hat{f} \right\|_{M}$$

$$\|f - \mathcal{P}f\|_{M} \le \inf_{\mathbf{x} \in \mathbb{C}^{N+K}} \{ \|f - \Phi_{N+K}\mathbf{x}\|_{M} \}$$

1 Influence of the representation and finite precision

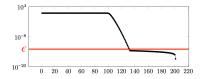
Using the enriched basis, $\mathcal{P}f=\Phi_{N+K}\mathbf{c}$ with

$$A\mathbf{c} \approx \mathbf{b}$$

where
$$(A)_{m,i} = \xi_m(\phi_i), (\mathbf{b})_m = \xi_m(f)$$

[Adcock and Huybrechs, 2019]

The coefficients ${f c}$ are increasingly underdetermined



 \rightarrow "regularized approximation space" (truncated SVD at a threshold ϵ)

$$H_{\xi,N+K}^{\epsilon} \subseteq H_{N+K}$$

1 Discrete approximation in enriched bases

Least squares approximation \mathcal{P}

$$\mathcal{P}f = \underset{\hat{f} \in H_{N+K}}{\operatorname{arg\,min}} \left\| f - \hat{f} \right\|_{M}$$

$$\|f - \mathcal{P}f\|_{M} \le \inf_{\mathbf{x} \in \mathbb{C}^{N+K}} \{ \|f - \Phi_{N+K} \mathbf{x}\|_{M} \}$$

Regularized least squares approximation \mathcal{P}^ϵ

$$\mathcal{P}^{\epsilon} f = \underset{\hat{f} \in H_{\xi, N+K}^{\epsilon}}{\operatorname{arg\,min}} \left\| f - \hat{f} \right\|_{M}$$

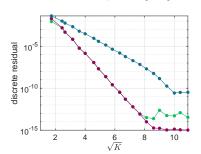
$$\|f - \mathcal{P}^{\epsilon} f\|_{M} \le \inf_{\mathbf{x} \in \mathbb{C}^{N+K}} \left\{ \|f - \Phi_{N+K} \mathbf{x}\|_{M} + \epsilon \|\mathbf{x}\|_{2} \right\}$$

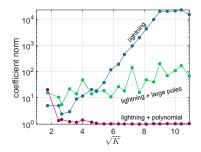
[Coppé, Huybrechs, Matthysen, and Webb, 2020]

1 Example: lightning approximation

$$\|f - \mathcal{P}^{\epsilon} f\|_{M} \leq \inf_{\mathbf{x} \in \mathbb{C}^{N+K}} \left\{ \|f - \Phi_{N+K} \mathbf{x}\|_{M} + \epsilon \|\mathbf{x}\|_{2} \right\}$$

Approximation of \sqrt{x} on [0,1]:





[Herremans, Huybrechs, and Trefethen, 2023]

1 Approximation error in enriched bases

What does $\|f-\mathcal{P}^\epsilon f\|_M$ tell us about $\|f-\mathcal{P}^\epsilon f\|_{\mathcal{H}}$?

[Adcock and Huybrechs, 2020]

$$\|f - \mathcal{P}^{\epsilon} f\|_{\mathcal{H}}$$

$$\leq \inf_{\mathbf{x} \in \mathbb{C}^{N+K}} \{ \|f - \Phi_{N+K} \mathbf{x}\|_{\mathcal{H}} + \frac{1}{\sqrt{A_{\xi,N+K}}} (\|f - \Phi_{N+K} \mathbf{x}\|_{M} + \epsilon \|\mathbf{x}\|_{2}) \}$$

1 Approximation error in enriched bases

What does $||f - \mathcal{P}^{\epsilon} f||_{M}$ tell us about $||f - \mathcal{P}^{\epsilon} f||_{\mathcal{H}}$?

$$\begin{split} & \left\| f - \mathcal{P}^{\epsilon} f \right\|_{\mathcal{H}} \\ & \leq \inf_{\mathbf{x} \in \mathbb{C}^{N+K}} \left\{ \ \left\| f - \Phi_{N+K} \, \mathbf{x} \right\|_{\mathcal{H}} \ + \frac{1}{\sqrt{A_{\xi,N+K}}} \left(\left\| f - \Phi_{N+K} \, \mathbf{x} \right\|_{M} + \epsilon \left\| \mathbf{x} \right\|_{2} \right) \right\} \end{split}$$

where

$$A_{\xi,N+K} \|f\|_{\mathcal{H}}^2 \le \|f\|_M^2 \qquad \forall f \in H_{N+K}$$

 \rightarrow choose \mathcal{M}_M such that $A_{\xi,N+K}$ is bounded from below

1 Example: lightning approximation

[Cohen and Migliorati, 2017]

For $\mathcal{H}=L^2$, you can compute a (weighted) sample distribution based on Φ_D which is near-optimal in the sense that

$$A_{\xi,D} \geq 1/2$$
 using only $M = \mathcal{O}(D \log D)$ random samples

with high probability

1 Example: lightning approximation

[Cohen and Migliorati, 2017]

For $\mathcal{H}=L^2$, you can compute a (weighted) sample distribution based on Φ_D which is near-optimal in the sense that

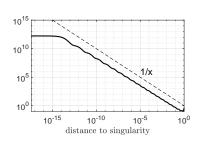
$$A_{\xi,D} \geq 1/2$$
 using only $M = \mathcal{O}(D \log D)$ random samples

with high probability

Experiment

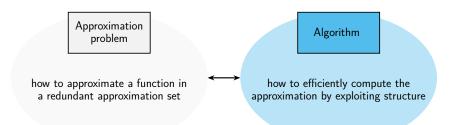
(near-)optimal sampling distribution for 20 lightning poles

 \rightarrow many samples needed close to the singularity



Enriched approximation scheme

$$\Phi_{N+K} = \underbrace{\{\varphi_n\}_{n=1}^N}_{\text{conventional basis}} \cup \underbrace{\{\psi_k\}_{k=1}^K}_{\text{extra functions}}$$



2 AZ algorithm [Coppé, Huybrechs, Matthysen, and Webb, 2020]

Goal

efficient computation of $A\mathbf{c} \approx \mathbf{b}$ $A: \mathbb{C}^N \to \mathbb{C}^M$

<u>Idea</u>

assume efficient solver $Z^*:\mathbb{C}^M \to \mathbb{C}^N$ exists for a subset of problems

$$A\mathbf{c}=\mathbf{v}$$
 for $\mathbf{c}=Z^*\mathbf{v}, \qquad \forall\, \mathbf{v}\in V\subset \mathrm{Col}(A)$
$$\downarrow V=\mathrm{Null}(I-AZ^*)$$

only perform least squares fitting in $\operatorname{Col}(A) \setminus V$

$$(I - AZ^*)A\tilde{\mathbf{c}} \approx (I - AZ^*)\mathbf{b}$$
 $\operatorname{rank}((I - AZ^*)A) \leq \operatorname{rank}(A) - \dim(V)$

comprehensive algebraic + analytic interpretation [Herremans and Huybrechs, 2023]

2 AZ algorithm [Coppé, Huybrechs, Matthysen, and Webb, 2020]

1
$$(I - AZ^*)A\mathbf{c_1} \approx (I - AZ^*)\mathbf{b}$$

new least squares problem

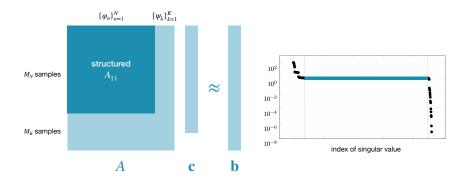
 $\mathbf{c_2} = Z^*(\mathbf{b} - A\mathbf{c_1})$

efficient solver

3 $c = c_1 + c_2$

- ▶ Efficiency low rank can be exploited via randomized NLA $\rightarrow A$ and Z^* should have fast matrix-vector products
- Accuracy the system $A\mathbf{c} \approx \mathbf{b}$ is only solved approximately \rightarrow error can grow with a factor $\|I AZ^*\|_2$

2 Structure of the least squares problem

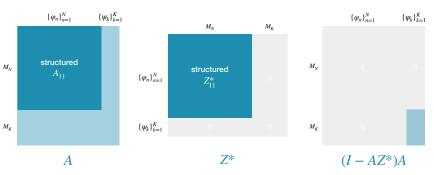


 M_N samples \to linked to conventional basis, structured M_K samples \to linked to extra functions, unstructured

2 AZ algorithm for enriched bases [Herremans and Huybrechs, 2023]

Efficient solver $Z_{11}^*:\mathbb{C}^{M_N}\to\mathbb{C}^N$ generally exists for approximation in conventional basis

Example: $Z_{11}^* = A_{11}^{-1}$



2 AZ algorithm for enriched bases [Herremans and Huybrechs, 2023]

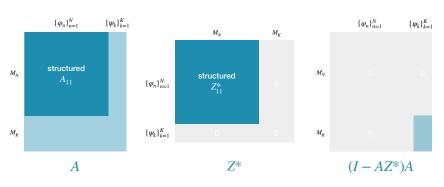
constructing the system matrix:

 $\mathcal{O}(\operatorname{cost}(Z_{11}^*)K)$ flops

solving the new least squares problem:

 $\mathcal{O}(M_KK^2)$ flops

 \leftrightarrow solving the original system: $\mathcal{O}(M(N+K)^2)$



2 Example: approximation of Green's function

Green's function of the 2D gravity Helmholtz equation

$$G(\mathbf{x}, \mathbf{y}) = A(\mathbf{x}, \mathbf{y}) \frac{1}{\log |\mathbf{x} - \mathbf{y}|} + B(\mathbf{x}, \mathbf{y})$$

Approximate with polynomials + weighted polynomials

$$\Phi_{N+K} = \{\varphi_n(\mathbf{x}, \mathbf{y})\}_{n=1}^N \cup \left\{ \frac{1}{\log |\mathbf{x} - \mathbf{y}|} \varphi_k(\mathbf{x}, \mathbf{y}) \right\}_{k=1}^K$$

Experiment

- lacktriangle parametrise both ${f x}=m{\gamma}(s_x)$ and ${f y}=m{\gamma}(s_y)$ on a semicircle
- use tensor-product Chebyshev polynomials

$$\{\varphi_n\}_{n=1}^{\sqrt{N}\times\sqrt{N}} = \{T_i(s_x)T_j(s_y)\}_{i,j=(0,0)}^{(\sqrt{N}-1,\sqrt{N}-1)}$$

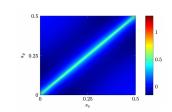
2 Example: approximation of Green's function

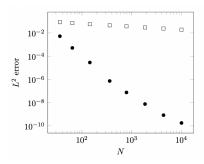
 $M_N = 4N, M_K = 0$

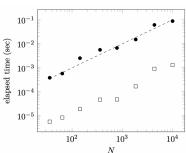
squares: Chebyshev approximation (K = 0)

dots: Chebyshev + weighted

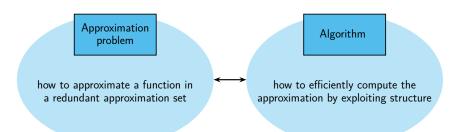
Chebyshev approximation ($K=5^2$)







Main conclusions



- regularization makes the approximation space smaller
- non-standard approximation spaces require non-standard samples

- AZ algorithm combines least squares fitting with a fast solver
- AZ algorithm for enriched bases is efficient when $N\gg K$

- Ben Adcock and Daan Huybrechs. Frames and numerical approximation. *SIAM Rev.*, 61 (3):443–473, 2019.
- Ben Adcock and Daan Huybrechs. Frames and numerical approximation II: Generalized sampling. *J. Fourier Anal. Appl.*, 26(6):87–114, 2020.
- Pablo D. Brubeck and Lloyd N. Trefethen. Lightning Stokes solver. *SIAM J. Sci. Comput.*, 44(3):A1205–A1226, 2022.
- Albert Cohen and Giovanni Migliorati. Optimal weighted least-squares methods. SMAI J. Comput. Math., 3:181–203, 2017.
- Vincent Coppé, Daan Huybrechs, Roel Matthysen, and Marcus Webb. The AZ Algorithm for Least Squares Systems with a Known Incomplete Generalized Inverse. *SIAM J. Matrix Anal. Appl.*, 41(3):1237–1259, 2020.
- Abinand Gopal and Lloyd N. Trefethen. Solving Laplace problems with corner singularities via rational functions. *SIAM J. Numer. Anal.*, 57(5):2074–2094, 2019.
- Astrid Herremans and Daan Huybrechs. Efficient function approximation in enriched approximation spaces. arXiv:2308.05652, 2023.
- Astrid Herremans, Daan Huybrechs, and Lloyd N. Trefethen. Resolution of singularities by rational functions. *SIAM J. Numer. Anal.*, 2023. (to appear).