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> the univariate case

> the multivariate case

> on the partial fractions representation
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| Dy s = logx 1
rational: —> sigmoid: (Huybrechs, Trefethen 2024)
X — Pk 1 4+ e5%
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simply use big poles / polynomials to capture the smooth behaviour




Lightning approximation

Given the locations of the singularities {z;} of f,
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Lightning approximation

Given the locations of the singularities {z;} of f,

“LIGHTNING” “POLYNOMIAL”
T T
ny n,
A P
f(2) R r(z) = Z , + 2 D 1(2)
_1 <7 Pk k=0

— finding a; and b, can be done via least squares fitting



Root-exponential convergence

Gopal and Trefethen, 2019

THEOREM 2.3. Let €2 be a convex polygon with corners wi,...,wm,, and let f be
an analytic function in ) that is analytic on the interior of each side segment and can
be analytically continued to a disk near each wy with a slit along the exterior bisector
there. Assume f satisfies f(z) — f(wi) = O(|z —wi|°) as z — wy, for each k for some
d > 0. There exist degree n rational functions {r,}, 1 <n < oo, such that

(2.11) |f = rallg = O(e™“V™)

as n — oo for some C > 0. Moreover, each r, can be taken to have finite poles
only at points exponentially clustered along the exterior bisectors at the corners, with
arbitrary clustering parameter o as in (2.5), as long as the number of poles near each
wg grows at least in proportion to n as n — o0.

(2.5) Bj=—e/Vn  0<j<n-1
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Optimisations

distance of poles from singularity, n = 50

uniform
¢ “tapering” of the poles (mefethen, Nakatsukasa and Weideman, 2021) tapered
107" 107 107 10°
10

e adding a low-degree polynomial (., Huybrechs and Trefethen, 2023)

degree of the polynomial

e for singularities of type x%, use 6 = 27/\/a 0 2

(H., Huybrechs and Trefethen, 2023) + (Xiang, Yang and Wu, 2024)



Optimal convergence rate
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(H., Huybrechs and Trefethen, 2023)




Multivariate case

— exploring multivariate lightning approximations goulié, H. and Huybrechs, 2024)
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Multivariate case

— exploring multivariate lightning approximations goulié, H. and Huybrechs, 2024)

35> 0: f(x,y) = O(|x|°) /
I asx — 0, Vy € [0,1]

Remember: poles could be chosen
iIndependently of the type of singularity 0 1




Multivariate case

— exploring multivariate lightning approximations goulié, H. and Huybrechs, 2024)

Variation along curve of singularities
— |ow degree polynomial

35> 0: f(x,y) = O(|x|°)
I asx — 0, Vy € [0,1]

Remember: poles could be chosen
iIndependently of the type of singularity 0 1




Multivariate case ()
flr,y) & Y ==+ b(x,y)
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Multivariate case

a(x + y)py
’ ~ . I b ’
S, y) Zk: TR (X, ¥)

f=4/lx =yl cos(10x) log,(error)




Multivariate case

- ak(x9 Y )p k
fx,y) = ; o =i b(x, y)

F=1x3=2x+1—y% = |Cx, ) log, (error)
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On the partial fractions representation
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(Nakatsukasa, Sete and Trefethen, 2018)



On the partial fractions representation
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(Nakatsukasa, Sete and Trefethen, 2018)



Sensitivity to data

Given sampled data (b); = f(x;), we compute f = Y, &, where
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Sensitivity to data

Given sampled data (b); = f(x;), we compute f = Y, &, where

¢ = argmin ||Ac — b||3 with (A); ; = ¢;(x,)

C

The (absolute) condition number of b — f satisfies
|

k<= where Cl[v]| < [[tvOx)iillo, Vv € span(¢y)

This does NOT depend on (the condition number of) the basis ¢,
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Numerical approximation space

on a computer we work with instead of ¢,



Numerical approximation space

we don’t know pbut we know it lies close to ¢,



Numerical approximation space
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Numerical approximation space

best approximation error in span(¢;) Inf ( || f— Zk Ck¢k”)
C

e focus on existence of accurate approximations with small coefficients (— frames)

e the difference is only significant If the basis is “numerically redundant”

e in practice: use ¢ Z—regu\arization, mind the scaling of ¢,



Numerical approximation space

(Adcock and Huybrechs, 2019/2020), (H. and Huylbrechs, 2025)

best approximation error in span(¢;) Inf ( || f— Zk Ck¢k”)
C

e focus on existence of accurate approximations with small coefficients (— frames)

e the difference is only significant If the basis is “numerically redundant”

e in practice: use ¢ Z—regu\arization, mind the scaling of ¢,



Numerical approximation space
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(H., Huybrechs and Trefethen, 2023)



Numerical approximation space
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(H., Huybrechs and Trefethen, 2023)



Numerical approximation space

max-norm error
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Conclusions

Given the locations of the singularities of a function, we can construct root-
exponentially converging rational approximations via least squares fitting
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Conclusions

Given the locations of the singularities of a function, we can construct root-
exponentially converging rational approximations via least squares fitting

® many mysteries have been solved in 1D
e |ots of exploring to do In higher dimensions

o the lightning basis is “lll-conditioned” yet accurate approximations exist in the
numerical approximation space — no need to panic ©



