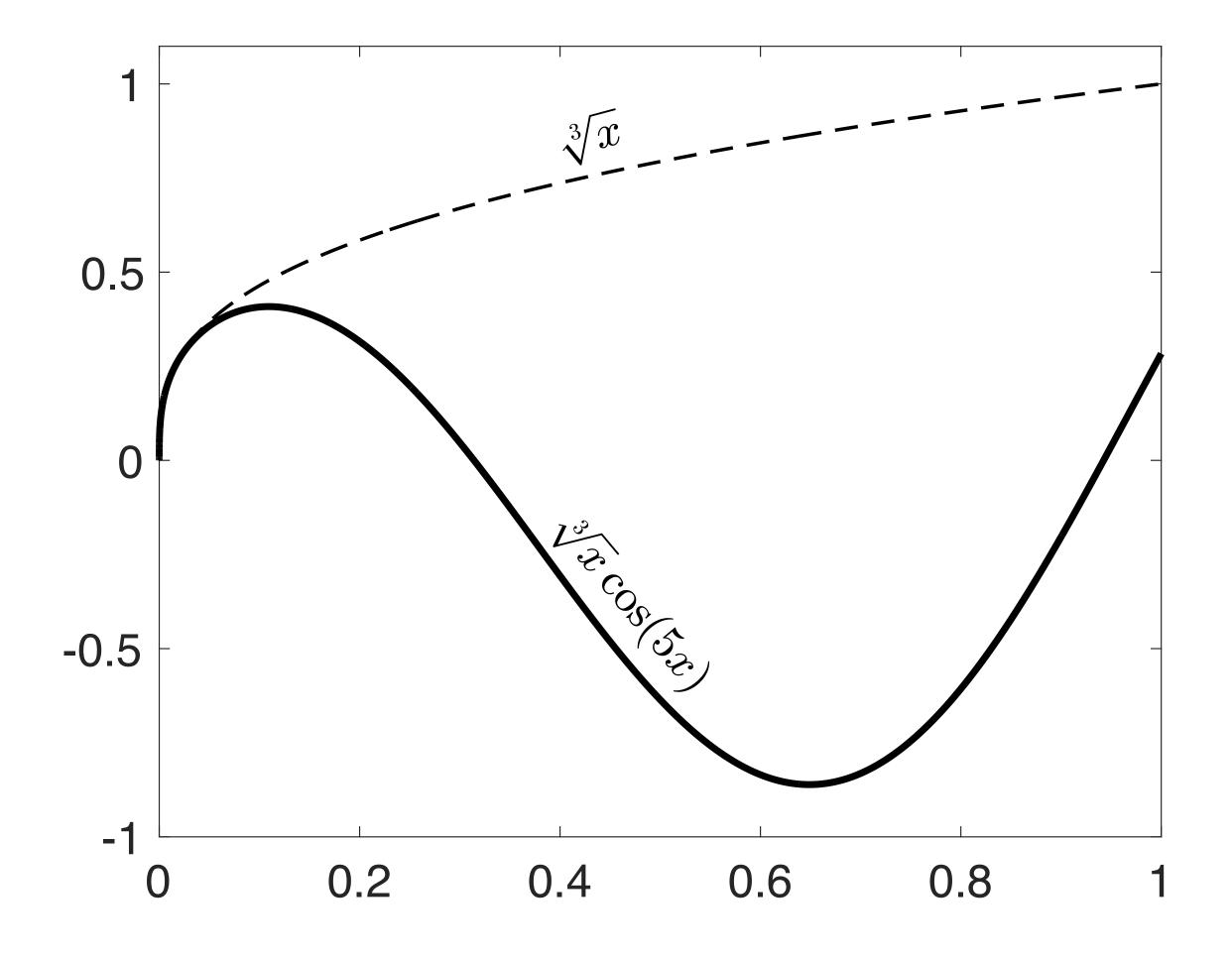
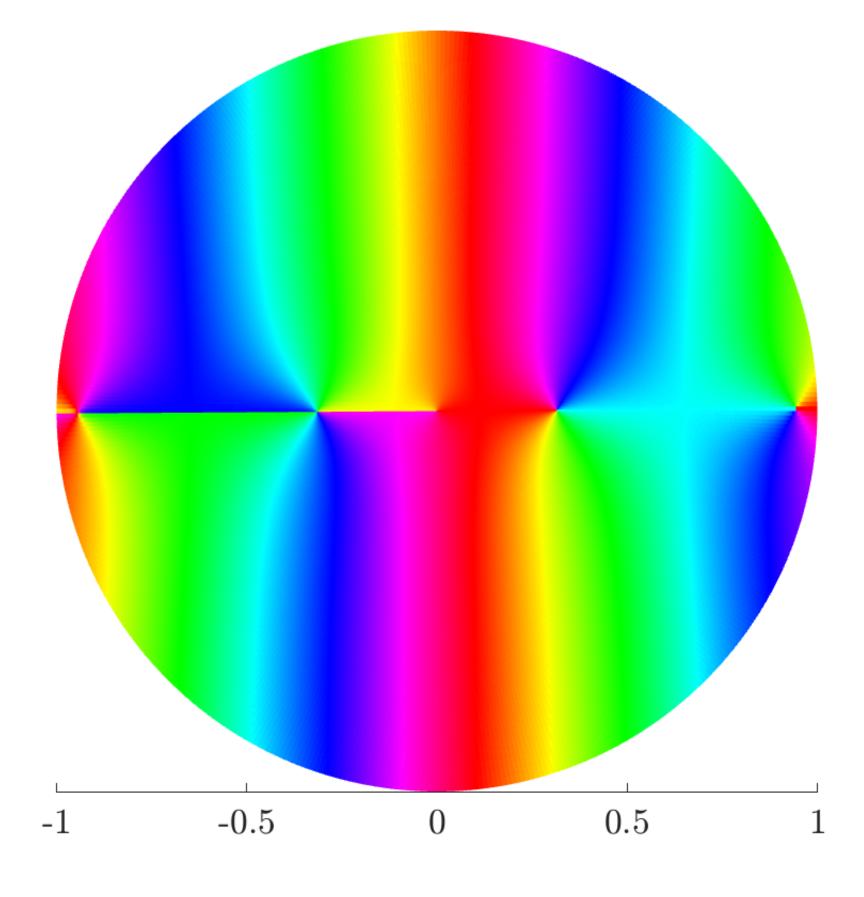


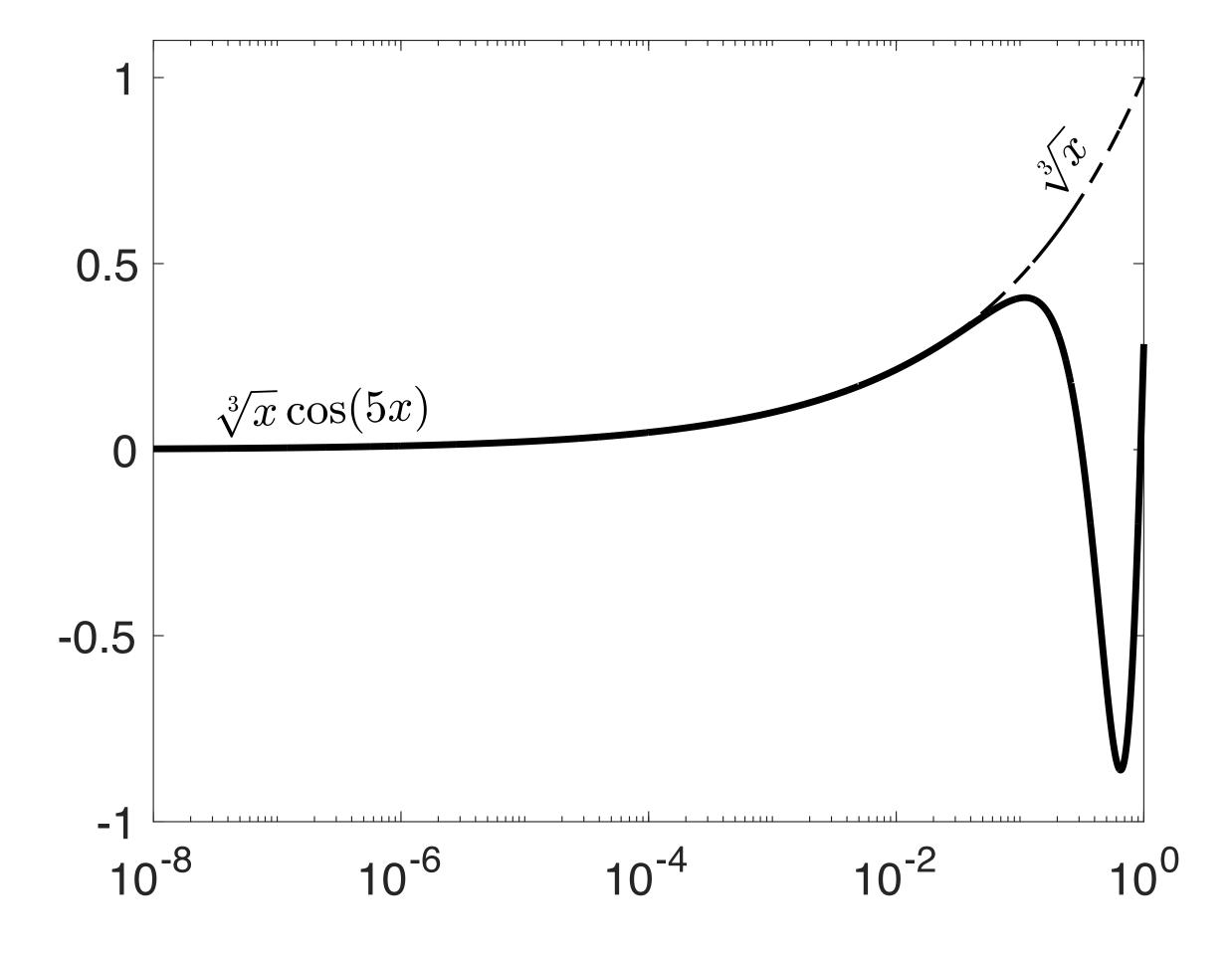
Rational approximation using partial fractions with preassigned poles

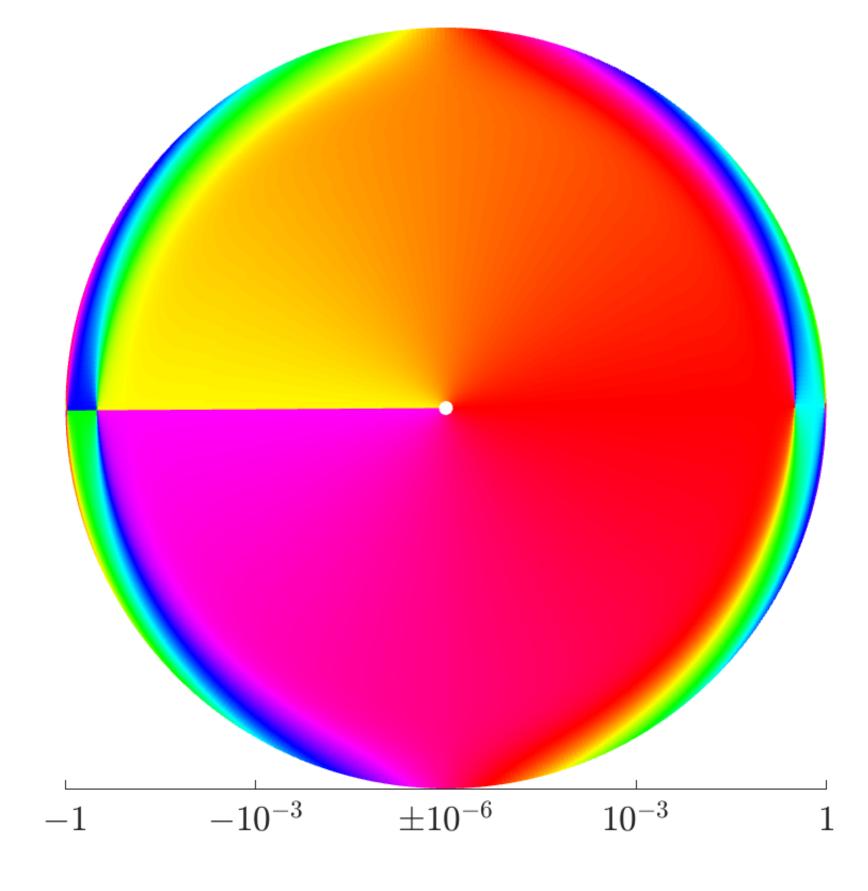
Astrid Herremans joint work with Daan Huybrechs, Nick Trefethen and Nicolas Boullé

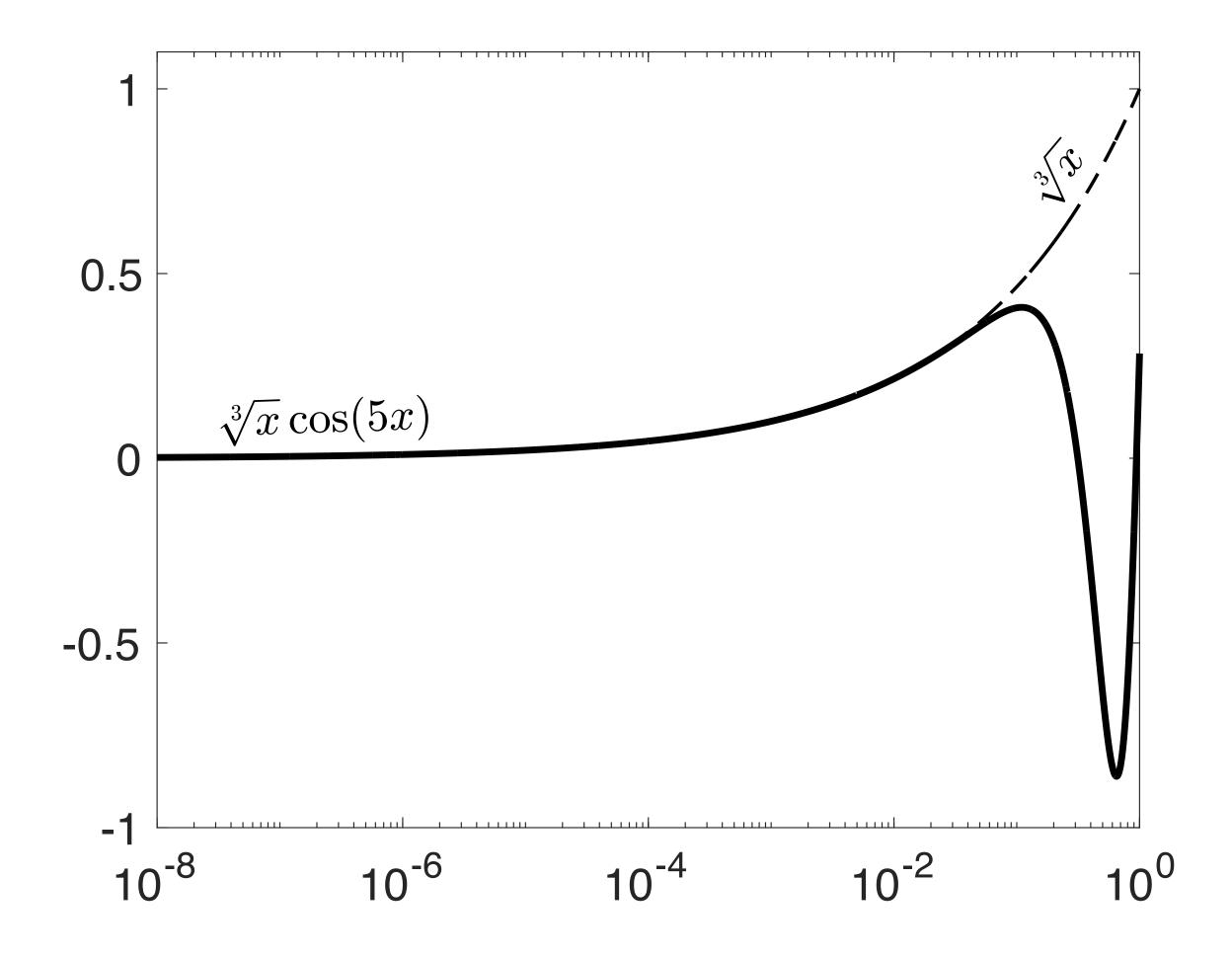
- the univariate case
- the multivariate case
- by on the partial fractions representation

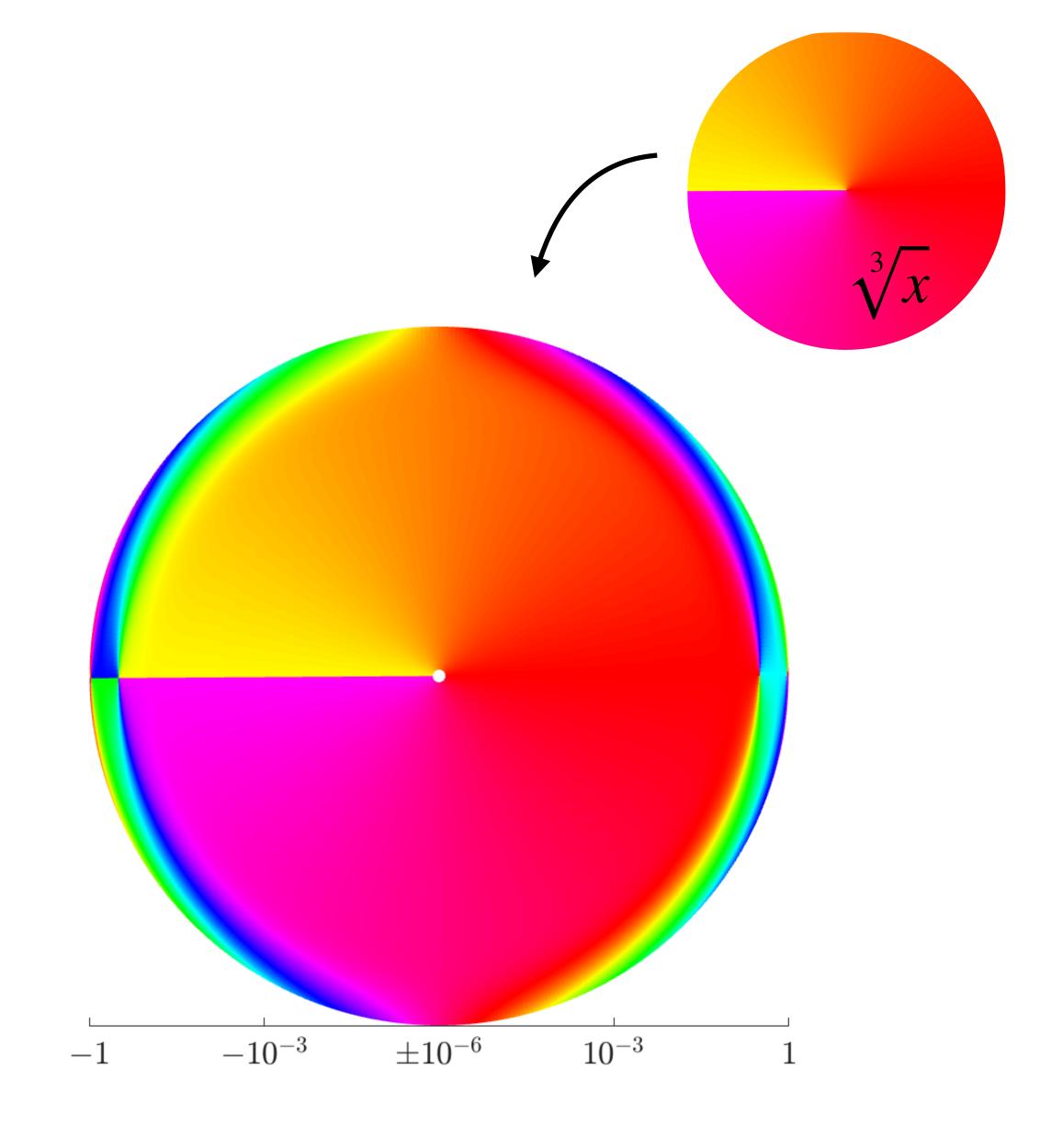


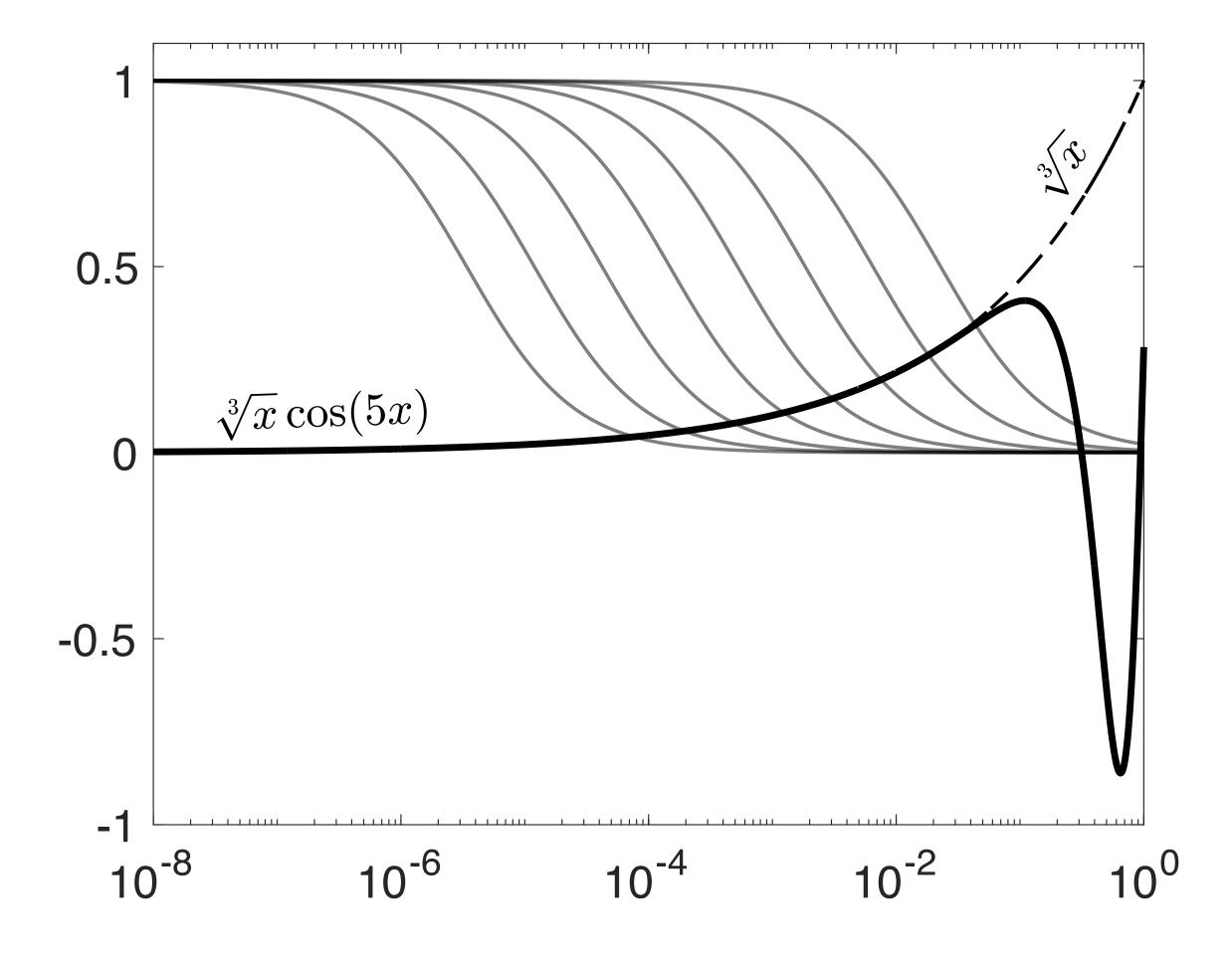


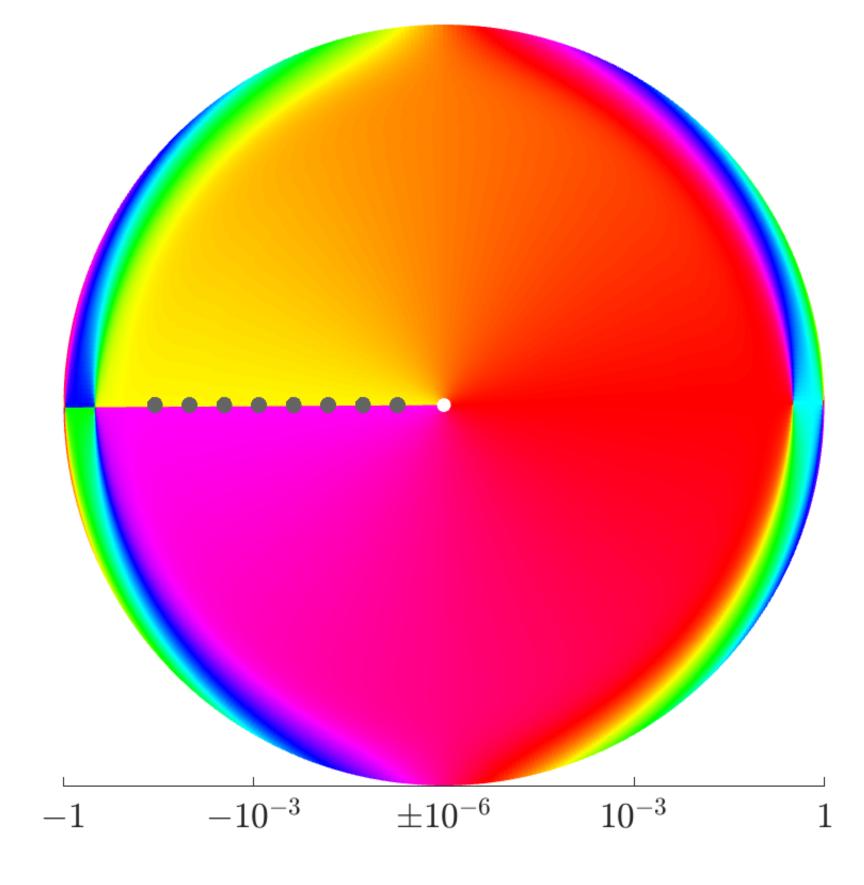




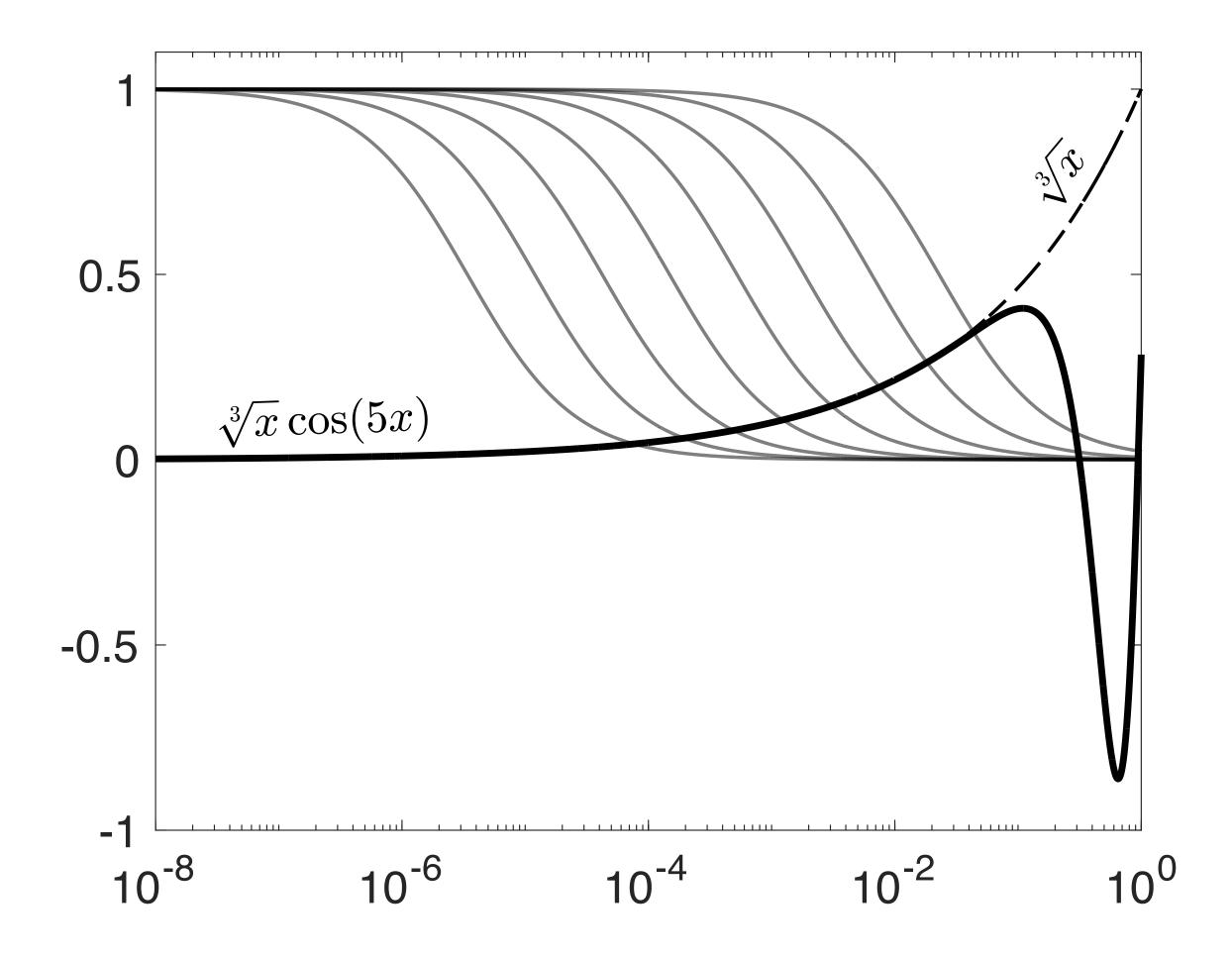


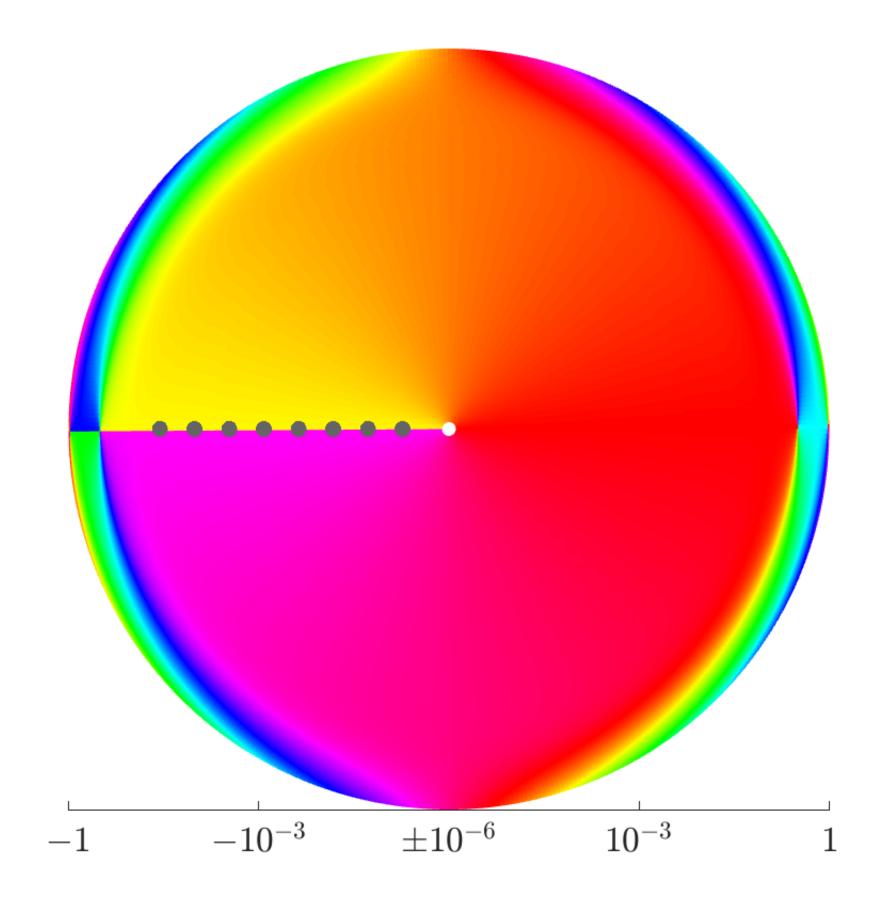


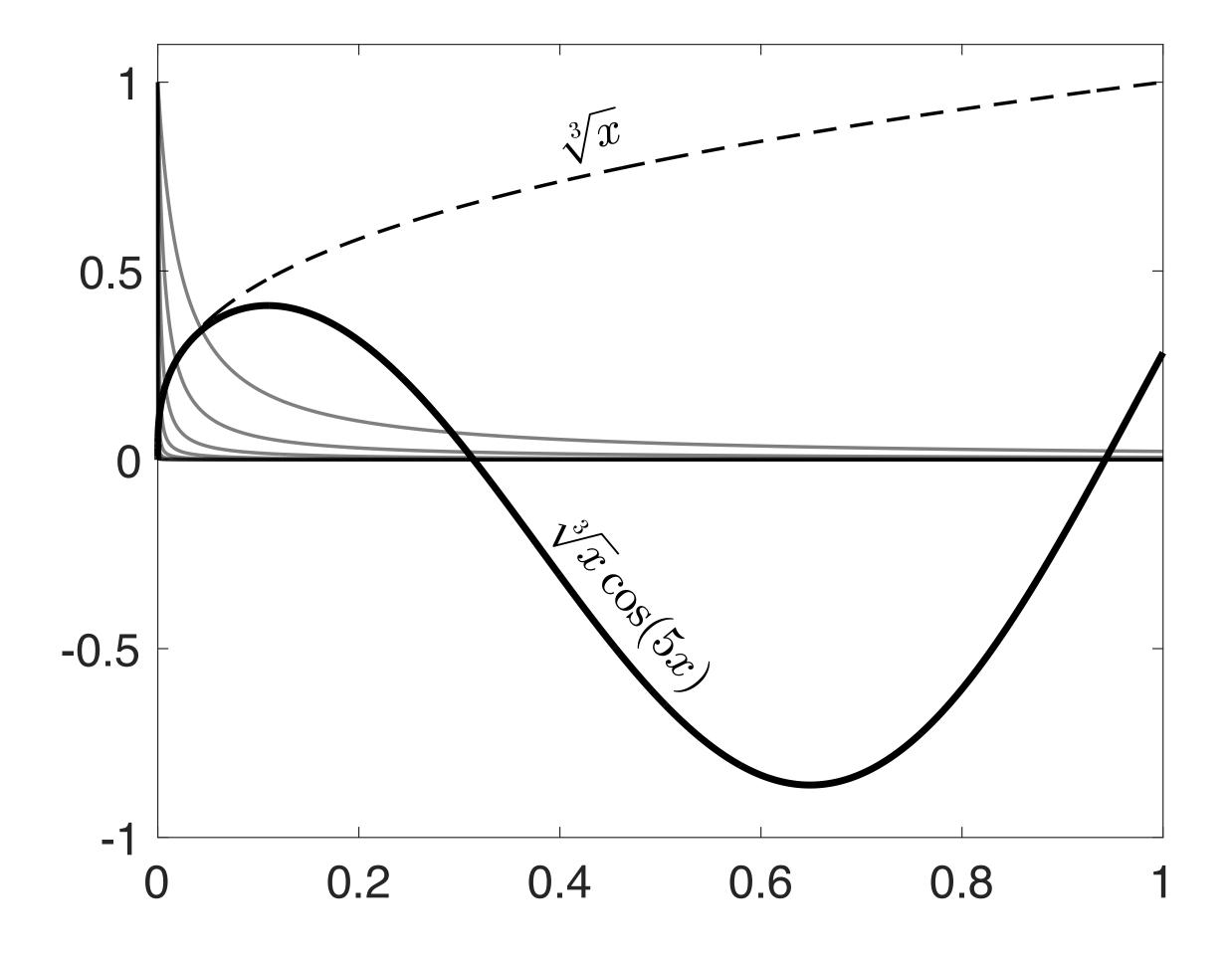


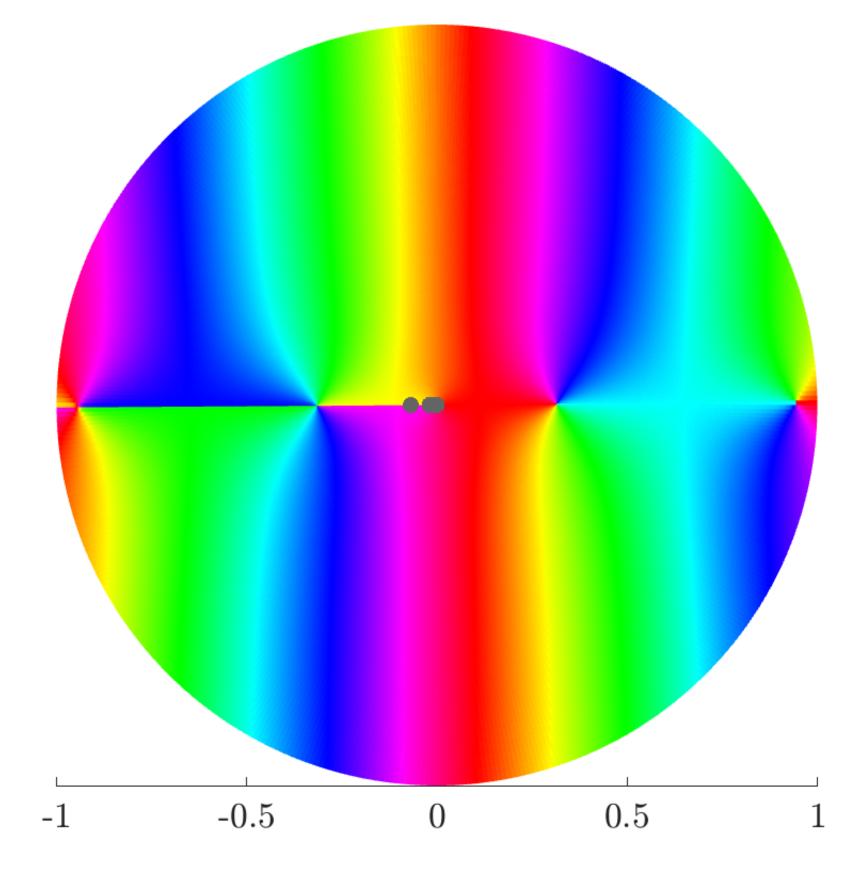


rational:
$$\frac{p_k}{x - p_k}$$
 $\xrightarrow{s = \log x}$ sigmoid: $\frac{1}{1 + e^{s - s_k}}$ (Huybrechs, Trefethen 2024)

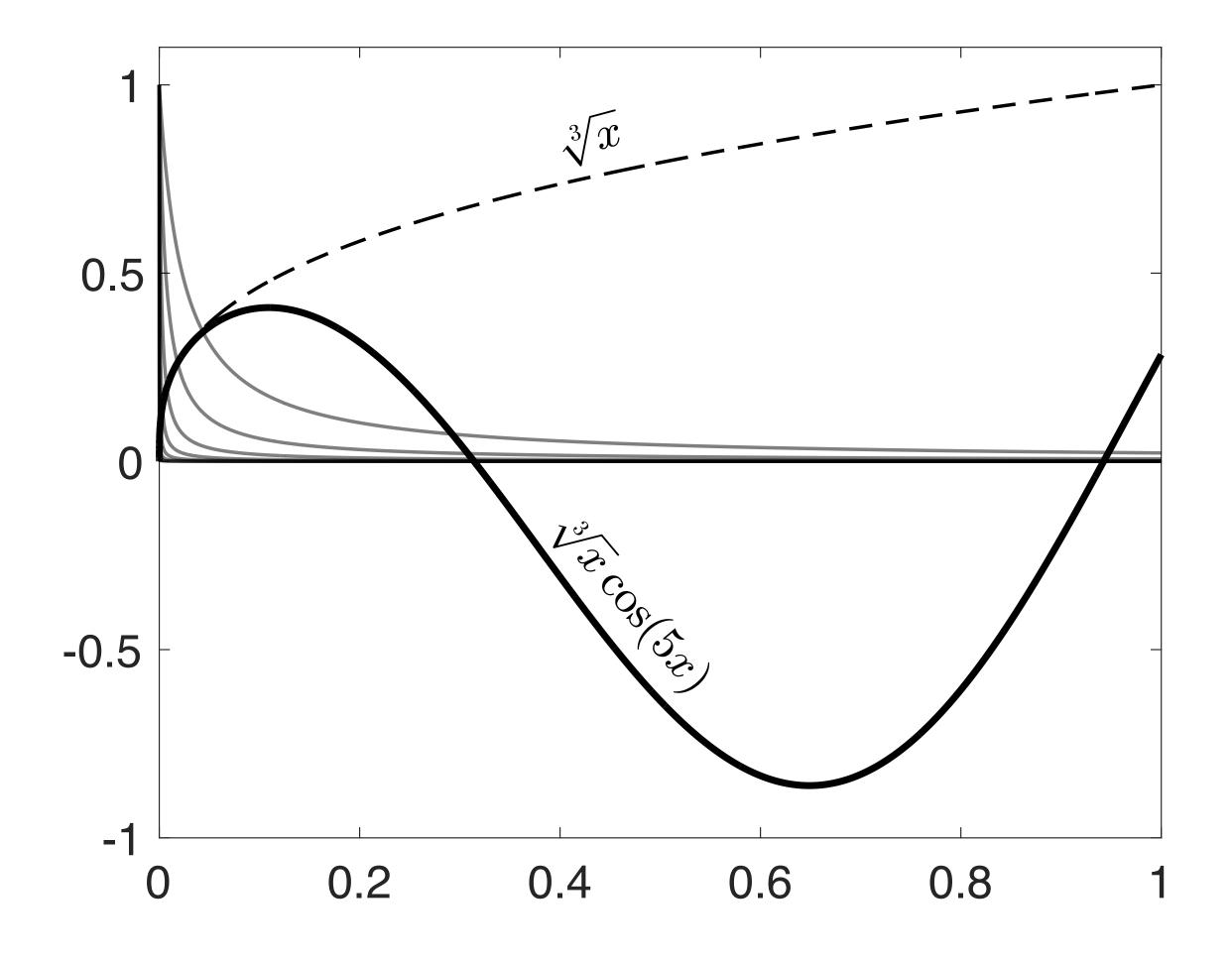


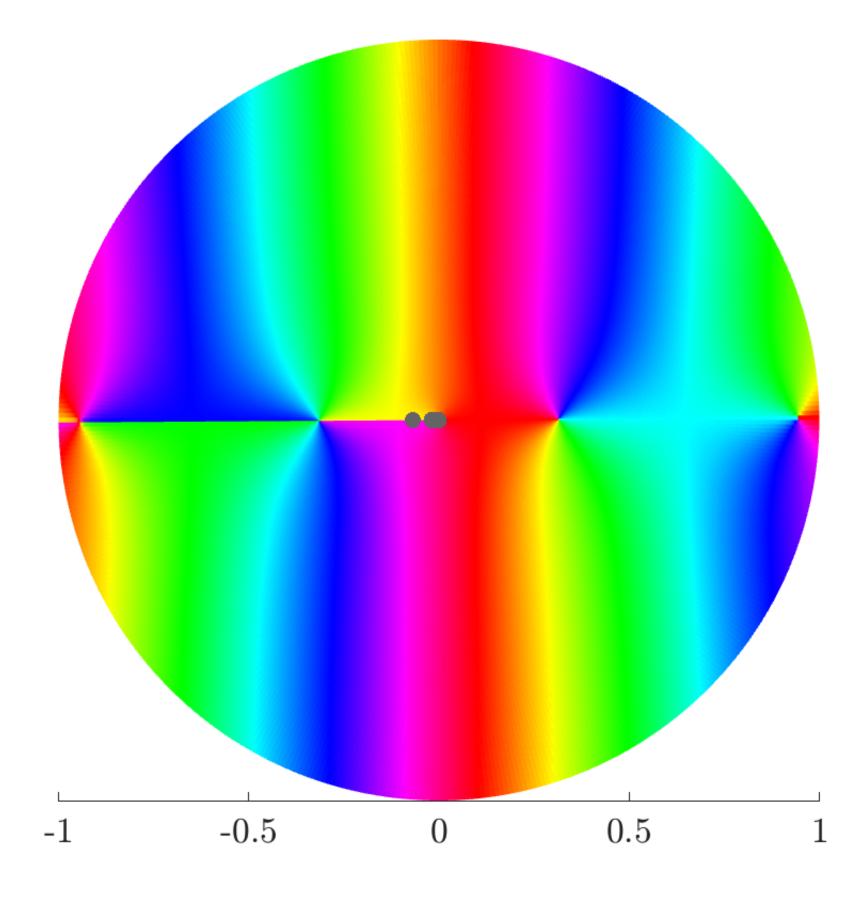




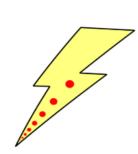


simply use big poles / polynomials to capture the smooth behaviour

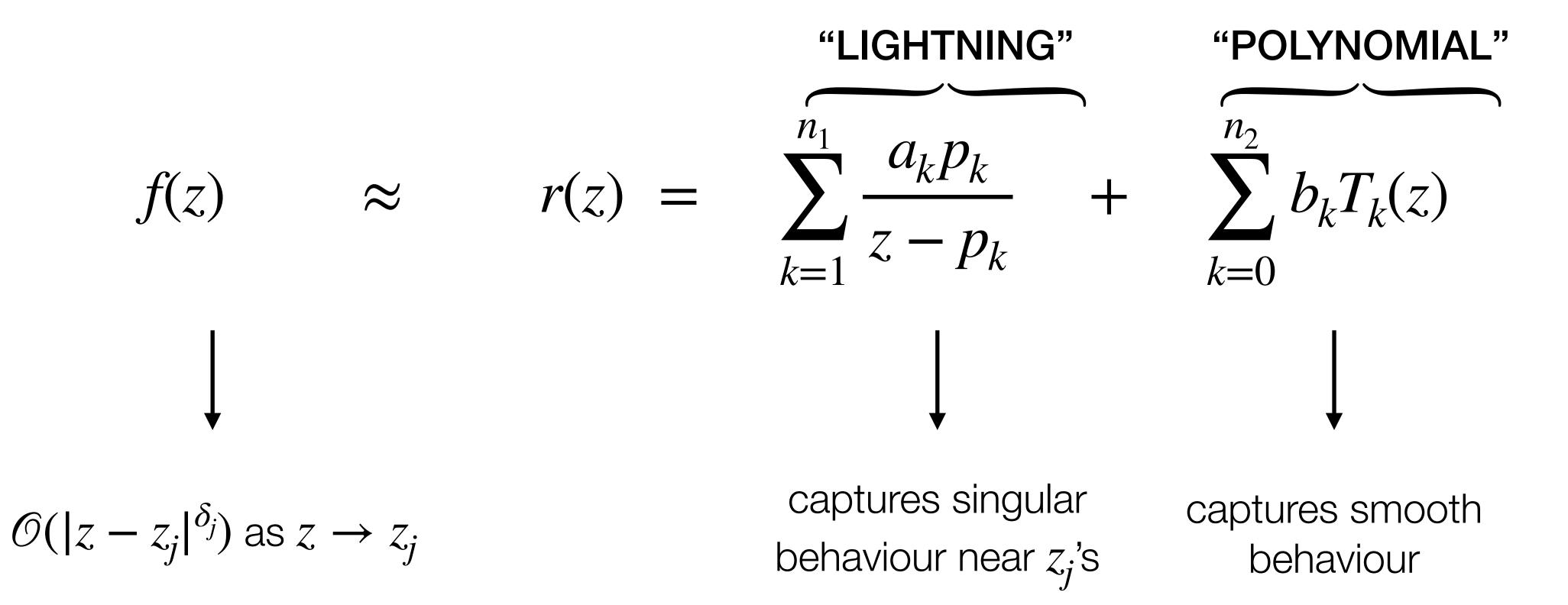




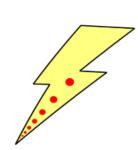
Lightning approximation



Given the locations of the singularities $\{z_i\}$ of f,



Lightning approximation



Given the locations of the singularities $\{z_i\}$ of f,

$$f(z) \approx r(z) = \sum_{k=1}^{n_1} \frac{a_k p_k}{z - p_k} + \sum_{k=0}^{n_2} b_k T_k(z)$$

 \rightarrow finding a_{l} and b_{l} can be done via least squares fitting

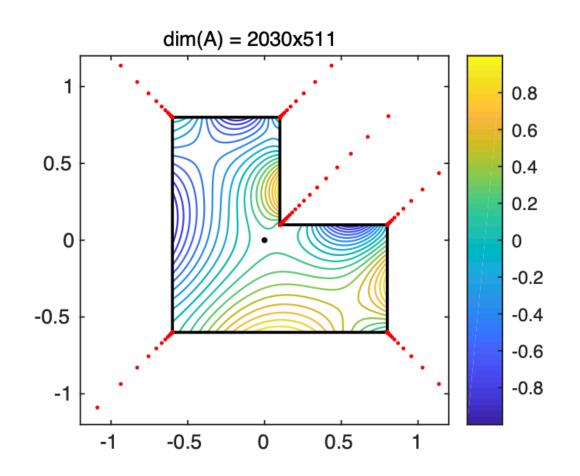
Root-exponential convergence

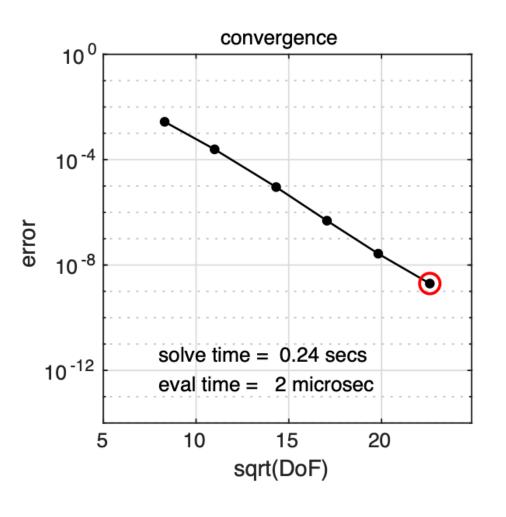
Gopal and Trefethen, 2019

Theorem 2.3. Let Ω be a convex polygon with corners w_1, \ldots, w_m , and let f be an analytic function in Ω that is analytic on the interior of each side segment and can be analytically continued to a disk near each w_k with a slit along the exterior bisector there. Assume f satisfies $f(z) - f(w_k) = O(|z - w_k|^{\delta})$ as $z \to w_k$ for each k for some $\delta > 0$. There exist degree n rational functions $\{r_n\}$, $1 \le n < \infty$, such that

as $n \to \infty$ for some C > 0. Moreover, each r_n can be taken to have finite poles only at points exponentially clustered along the exterior bisectors at the corners, with arbitrary clustering parameter σ as in (2.5), as long as the number of poles near each w_k grows at least in proportion to n as $n \to \infty$.

(2.5)
$$\beta_j = -e^{-\sigma j/\sqrt{n}}, \quad 0 \le j \le n-1$$





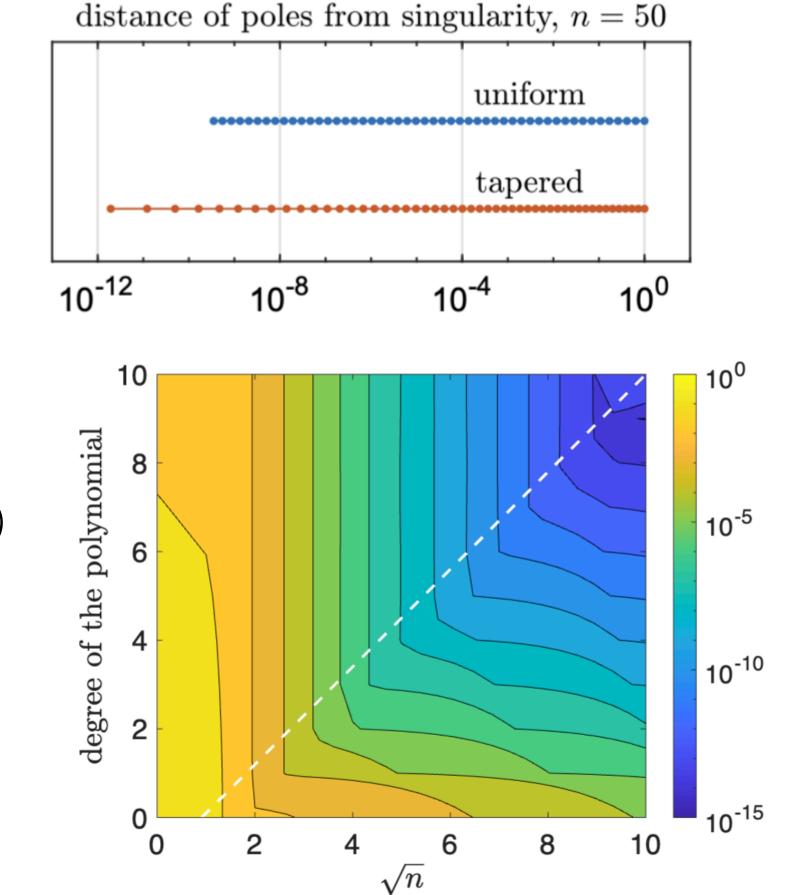
Optimisations

• "tapering" of the poles (Trefethen, Nakatsukasa and Weideman, 2021)

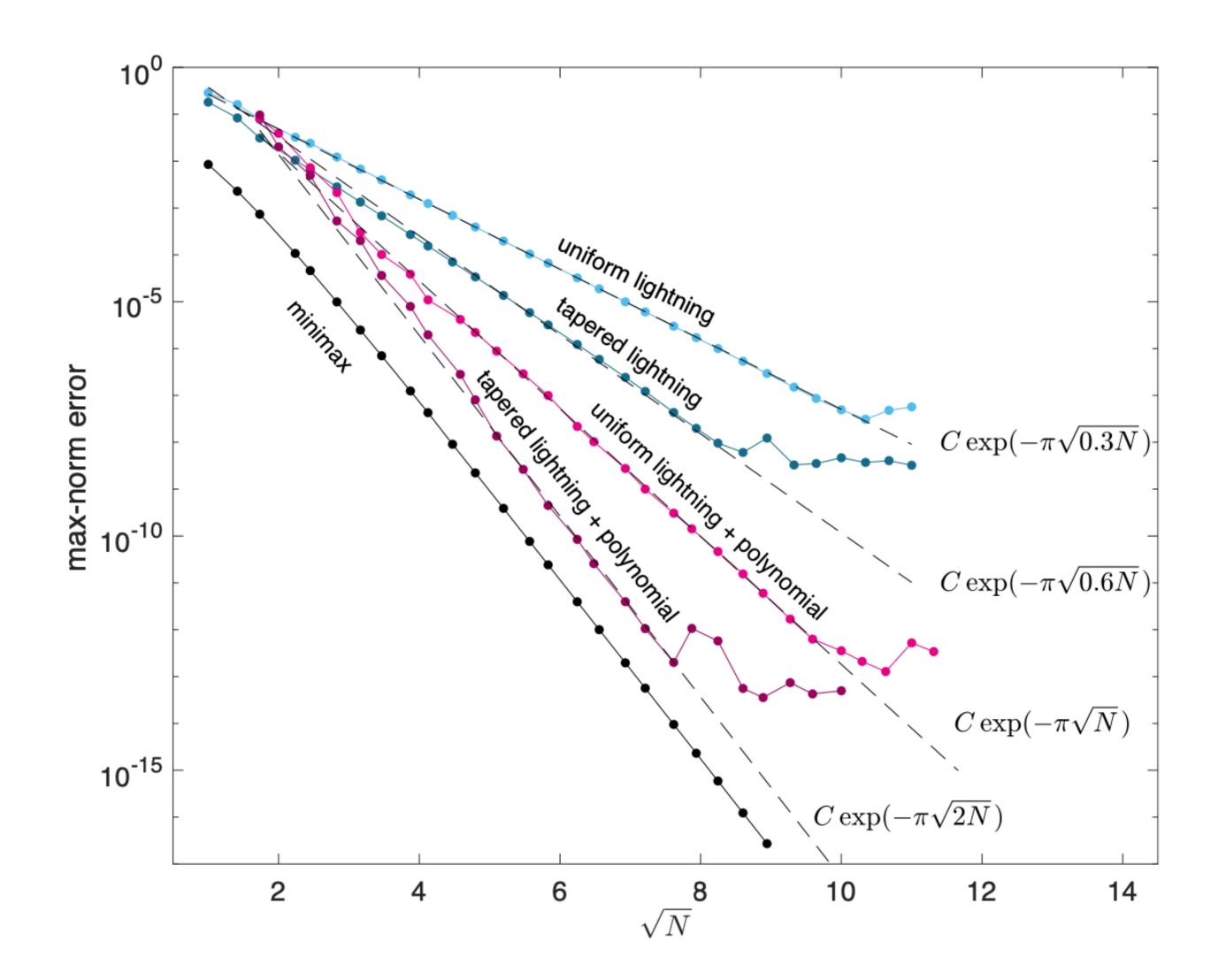
• adding a low-degree polynomial (H., Huybrechs and Trefethen, 2023)

• for singularities of type x^{α} , use $\sigma = 2\pi/\sqrt{\alpha}$

(H., Huybrechs and Trefethen, 2023) + (Xiang, Yang and Wu, 2024)

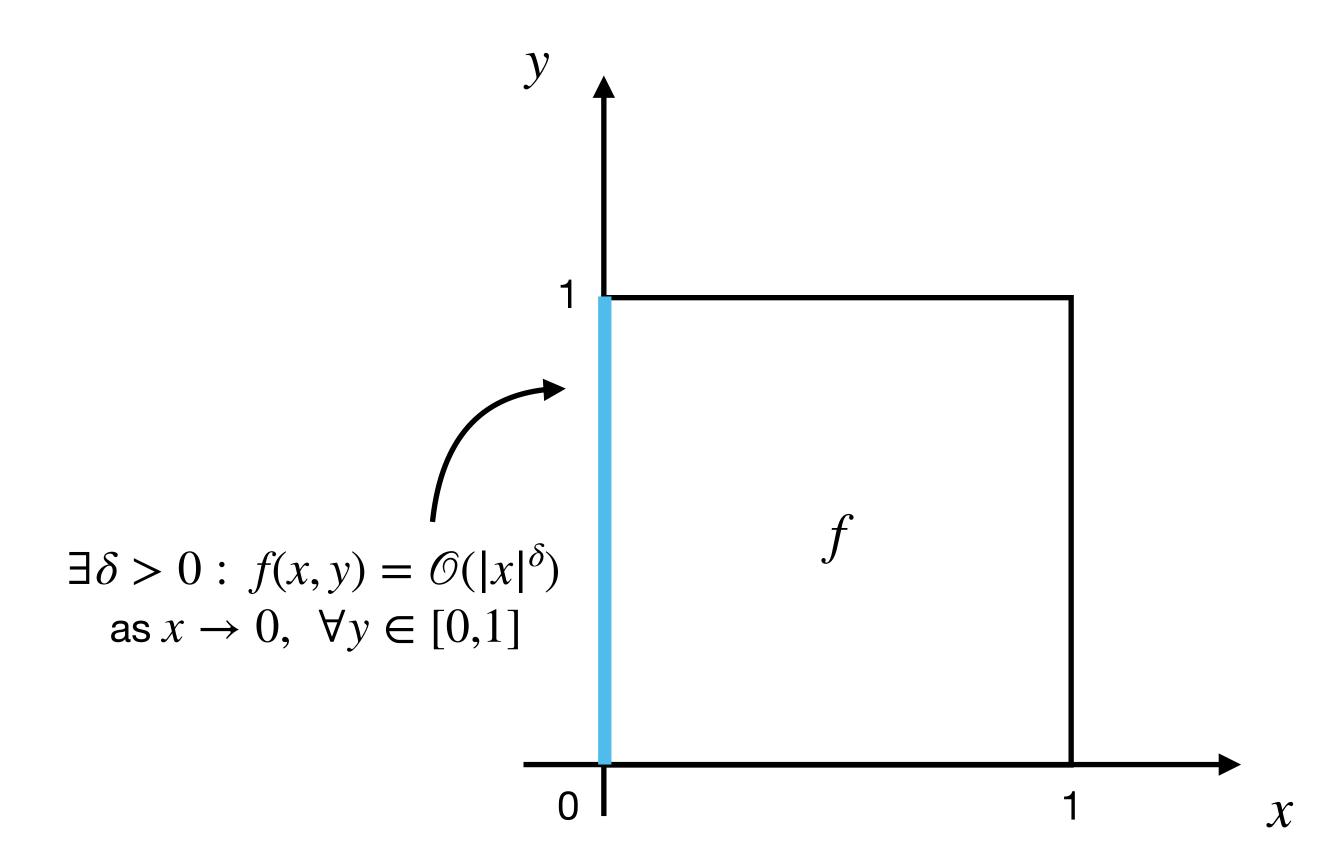


Optimal convergence rate

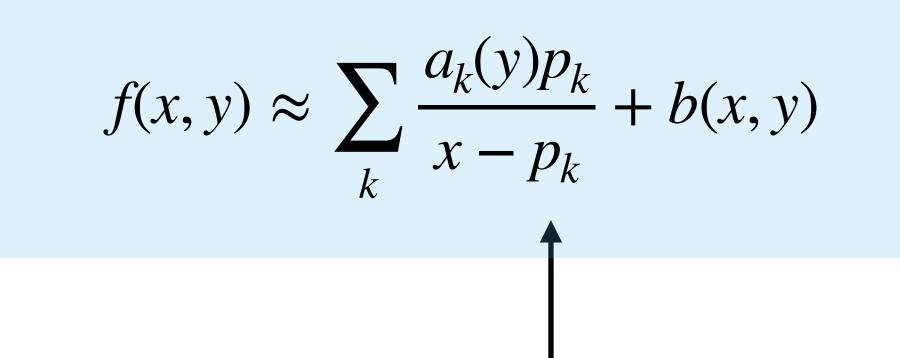


→ exploring multivariate lightning approximations (Boullé, H. and Huybrechs, 2024)

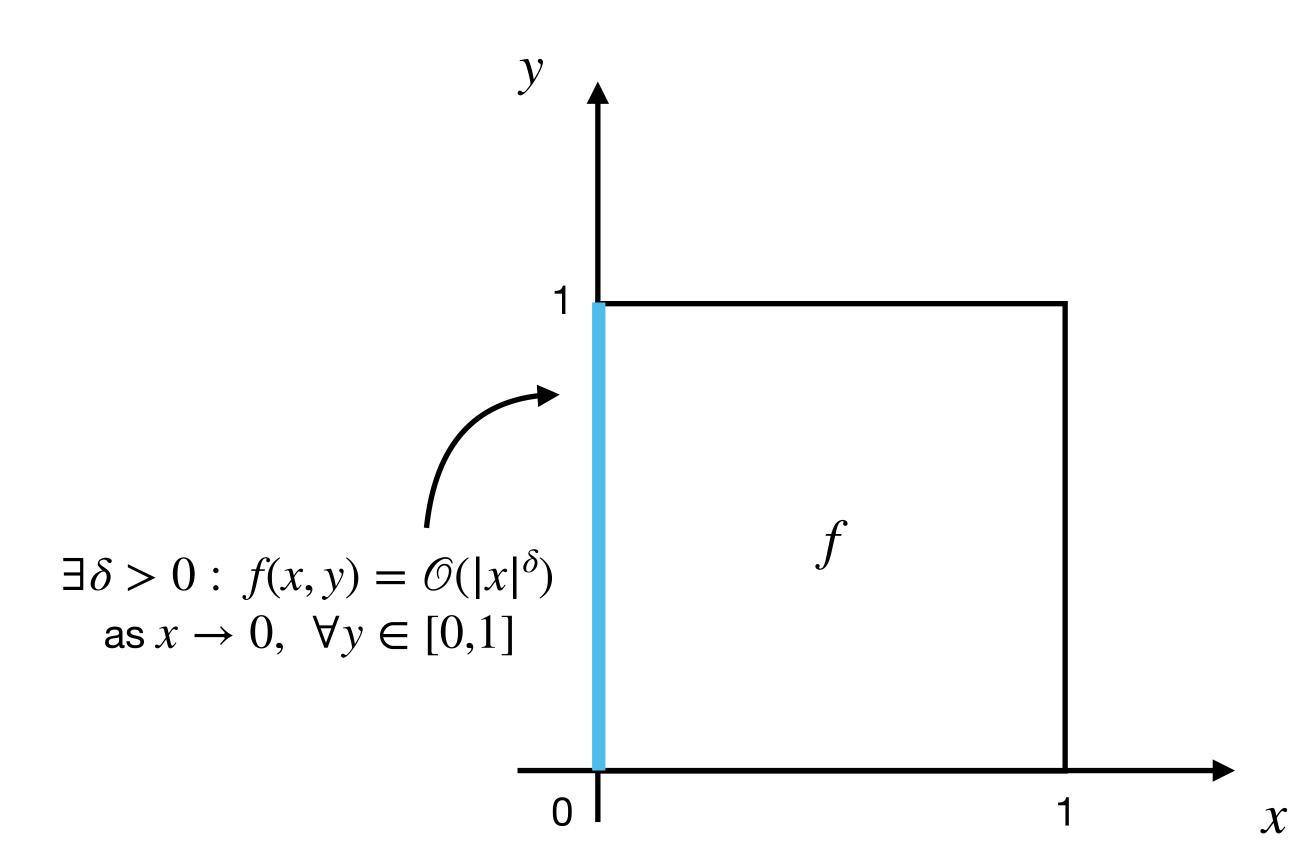
$$f(x,y) \approx \sum_{k} \frac{a_k(y)p_k}{x - p_k} + b(x,y)$$



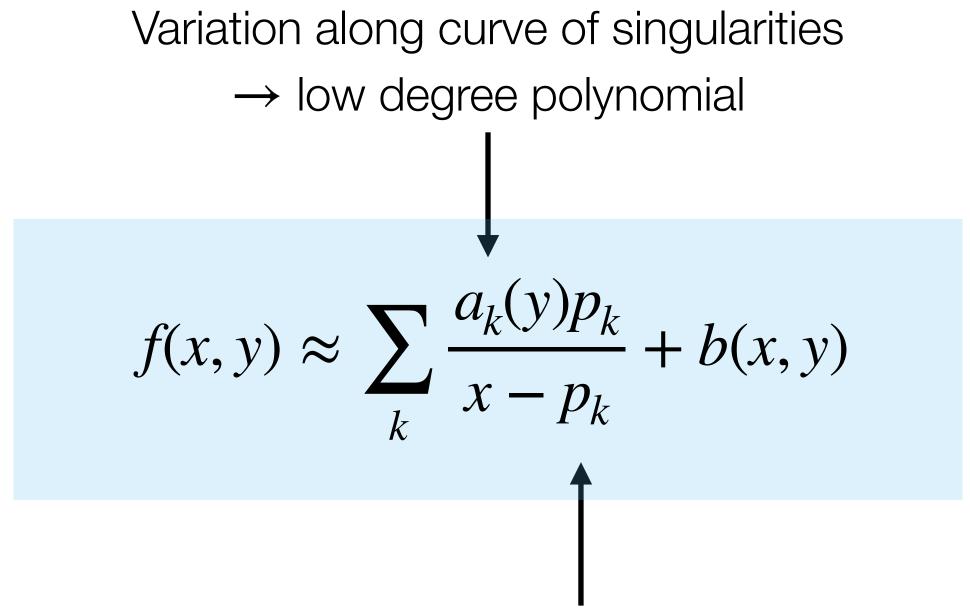
→ exploring multivariate lightning approximations (Boullé, H. and Huybrechs, 2024)



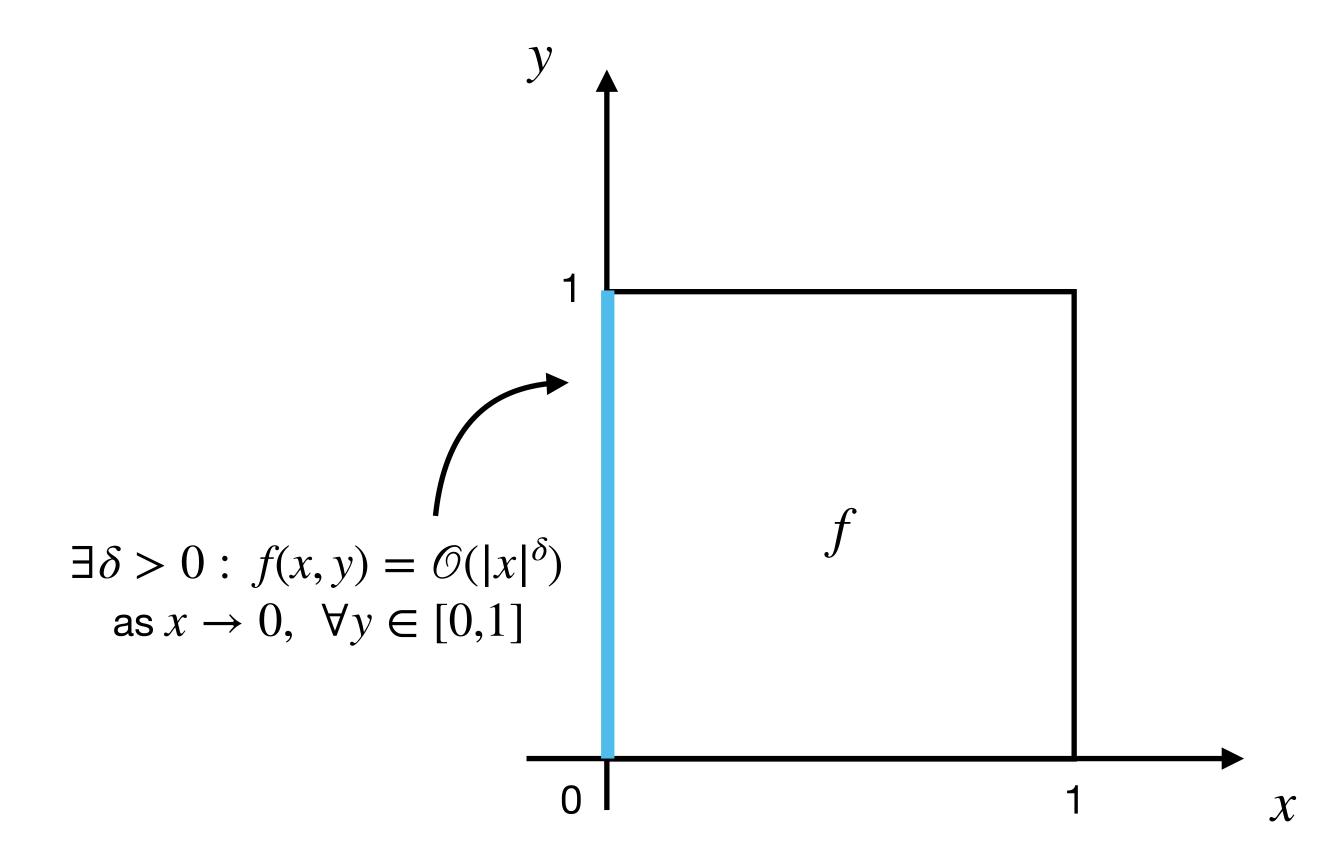
Remember: poles could be chosen independently of the type of singularity



→ exploring multivariate lightning approximations (Boullé, H. and Huybrechs, 2024)

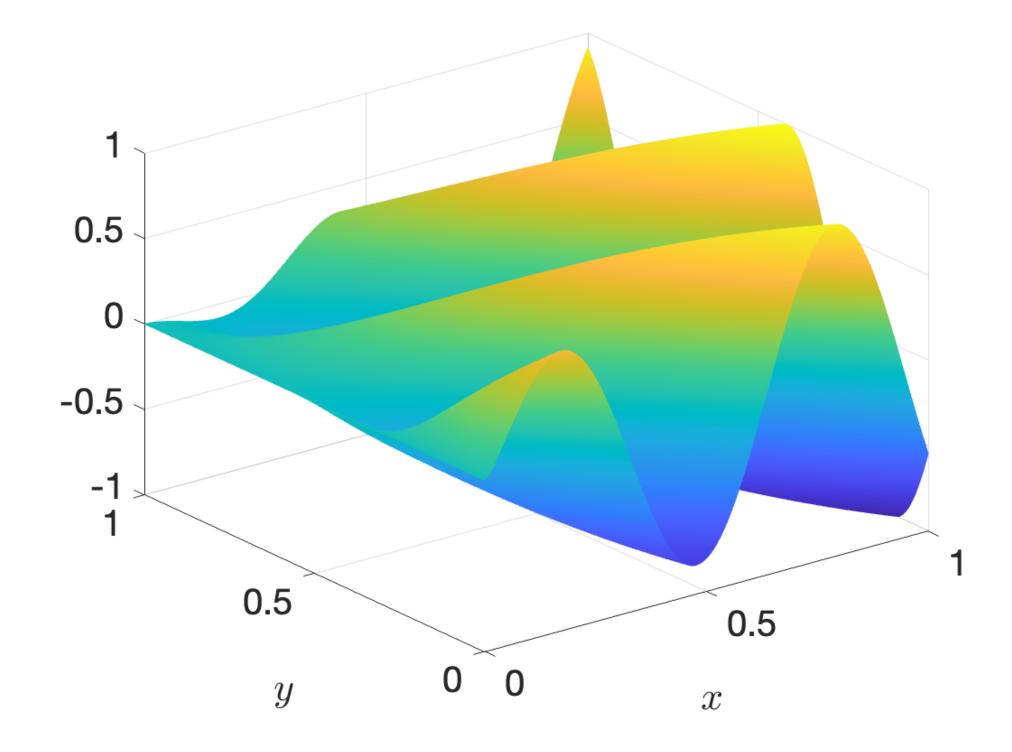


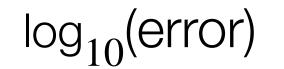
Remember: poles could be chosen independently of the type of singularity

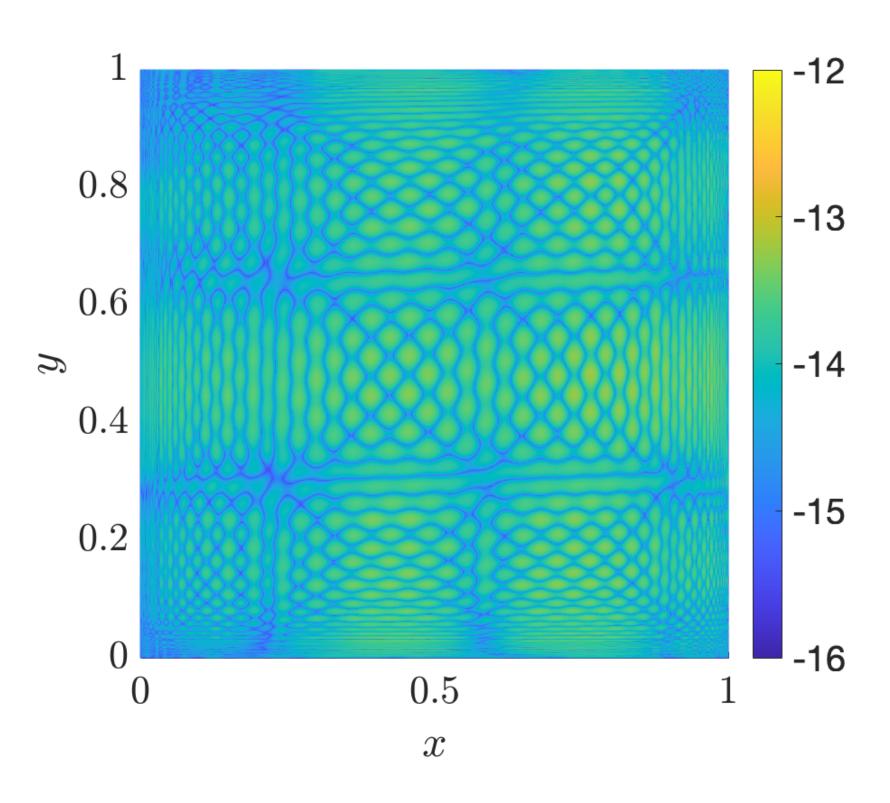


$$f(x, y) \approx \sum_{k} \frac{a_k(y)p_k}{x - p_k} + b(x, y)$$

$$f = x^{1/4+y} \sin(10(x+y))$$

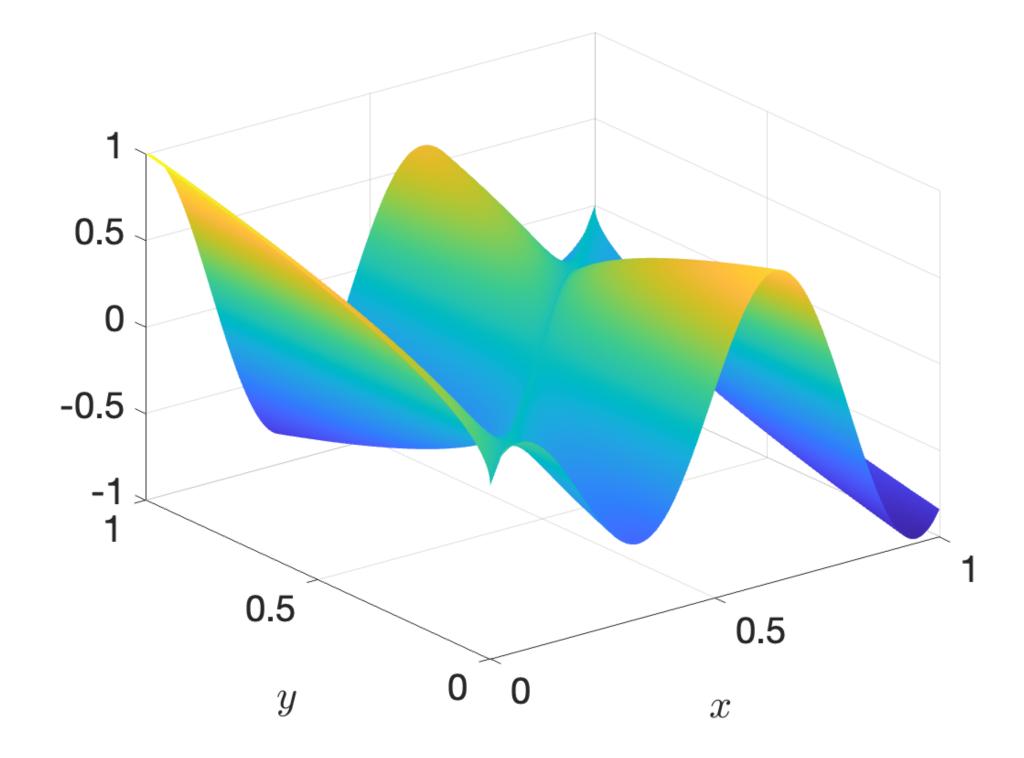




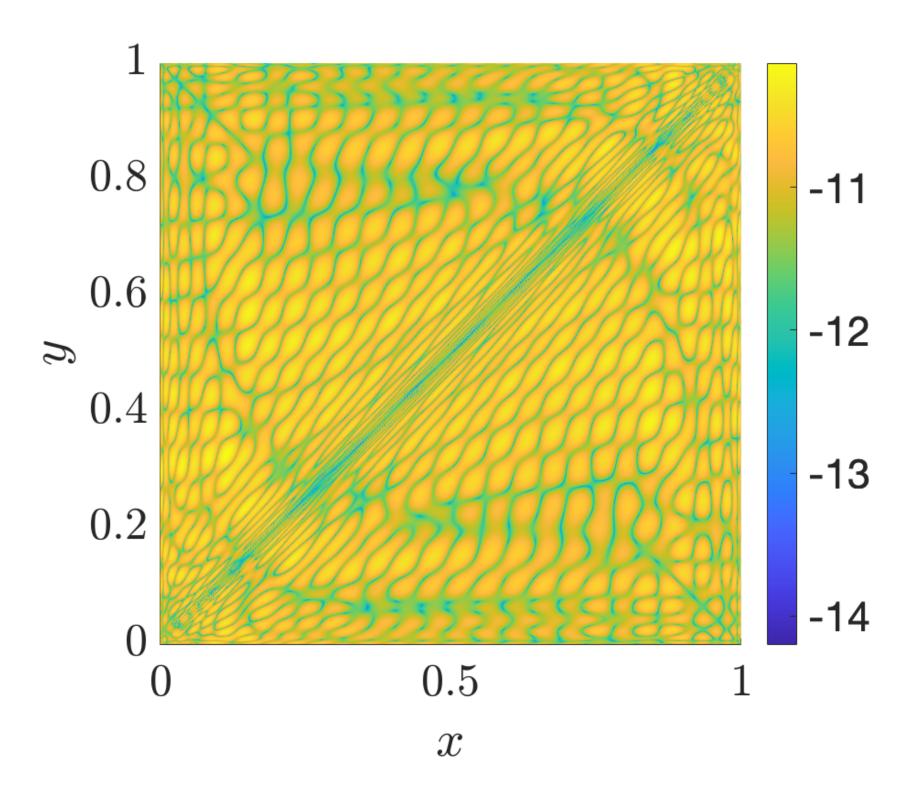


$$f(x,y) \approx \sum_{k} \frac{a_k(x+y)p_k}{(y-x) \pm ip_k} + b(x,y)$$

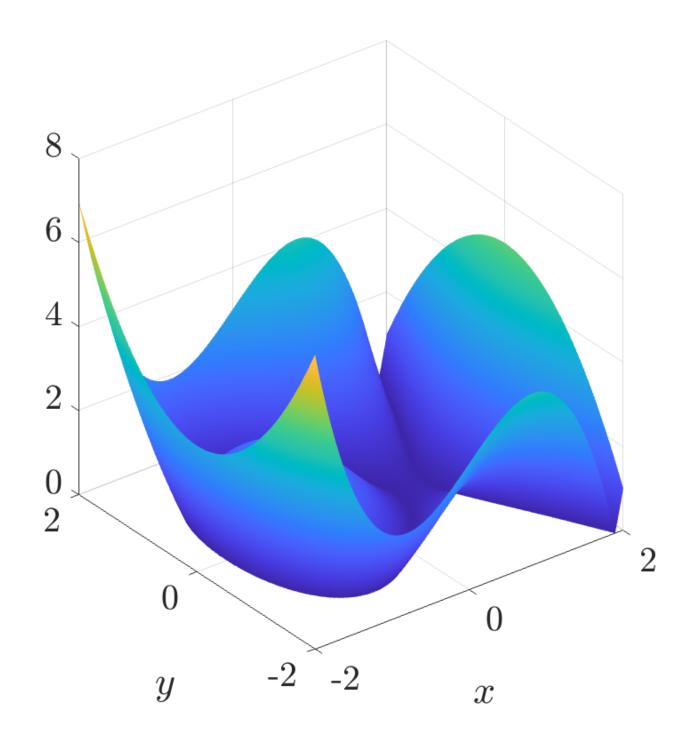
$$f = \sqrt{|x - y|} \cos(10x)$$



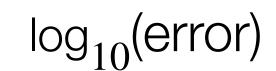
log₁₀(error)

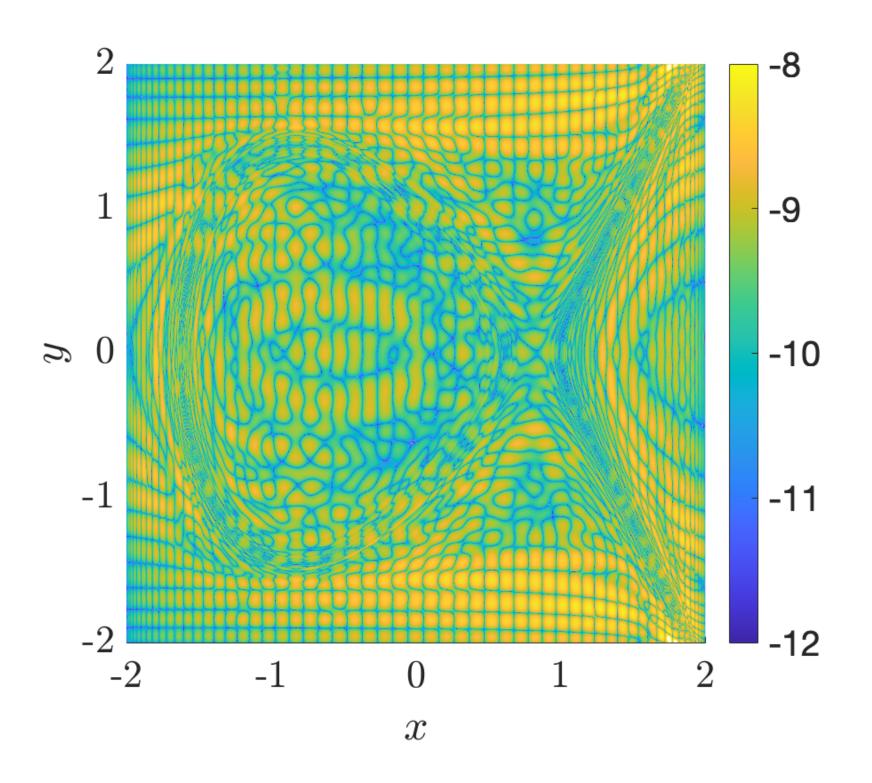


$$f = |x^3 - 2x + 1 - y^2| = |C(x, y)|$$

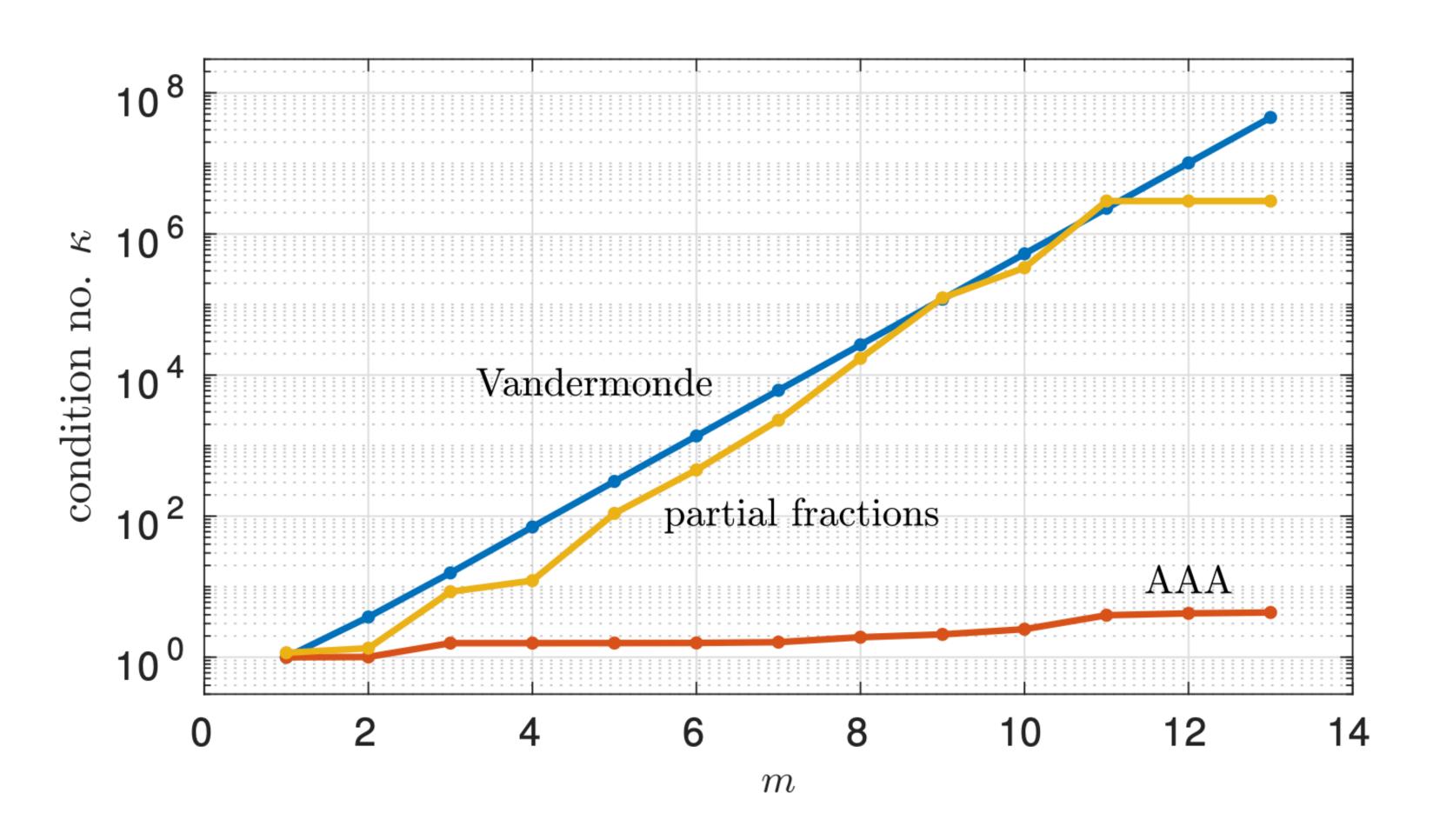


$$f(x,y) \approx \sum_{k} \frac{a_k(x,y)p_k}{C(x,y) \pm ip_k} + b(x,y)$$



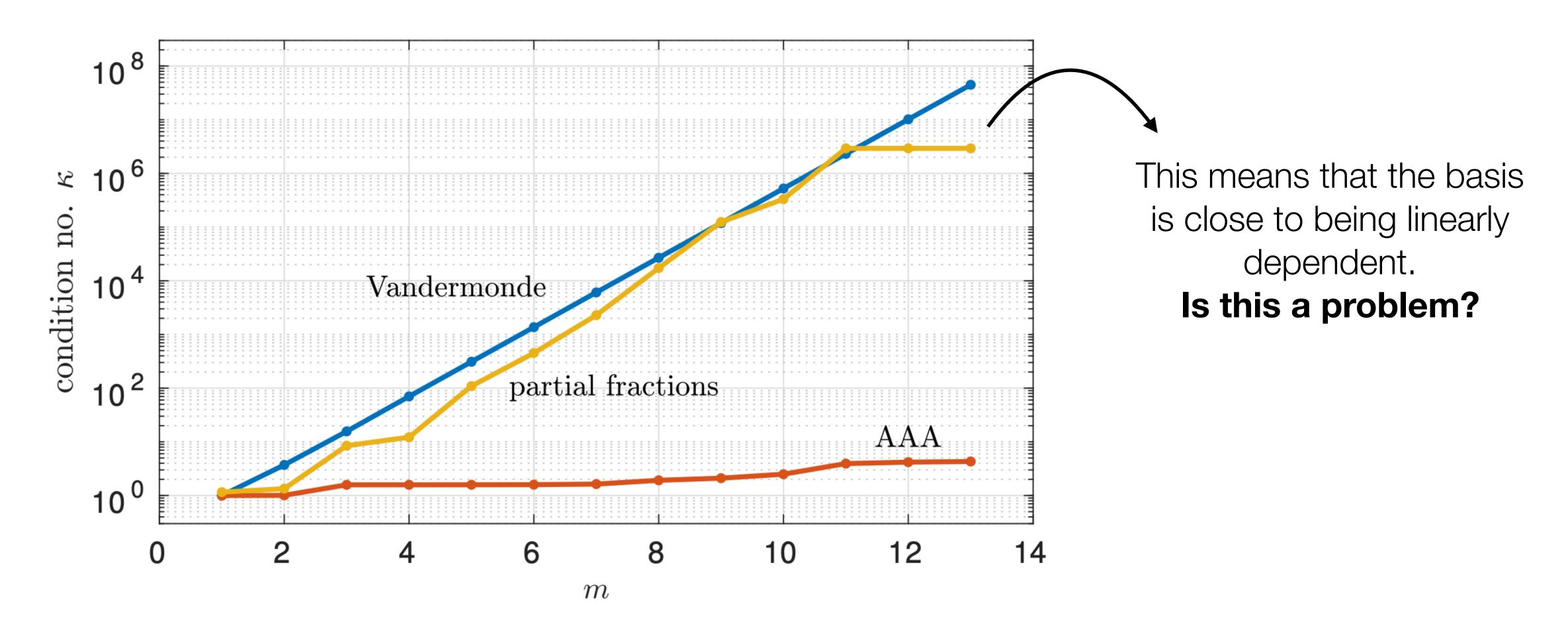


On the partial fractions representation



(Nakatsukasa, Sète and Trefethen, 2018)

On the partial fractions representation



(Nakatsukasa, Sète and Trefethen, 2018)

Sensitivity to data

Given sampled data
$$(b)_i = f(x_i)$$
, we compute $\hat{f} = \sum_k \hat{c}_k \phi_k$ where

$$\hat{c} = \arg\min_{c} ||Ac - b||_2^2$$
 with $(A)_{i,j} = \phi_j(x_i)$

Sensitivity to data

Given sampled data $(b)_i = f(x_i)$, we compute $\hat{f} = \sum_k \hat{c}_k \phi_k$ where

$$\hat{c} = \arg\min_{c} ||Ac - b||_2^2$$
 with $(A)_{i,j} = \phi_j(x_i)$

The (absolute) condition number of $b\mapsto \hat{f}$ satisfies

$$\kappa \leq \frac{1}{C} \qquad \text{where } C\|v\| \leq \|\{v(x_i)\}_i\|_2, \quad \forall v \in \text{span}(\phi_k)$$

Sensitivity to data

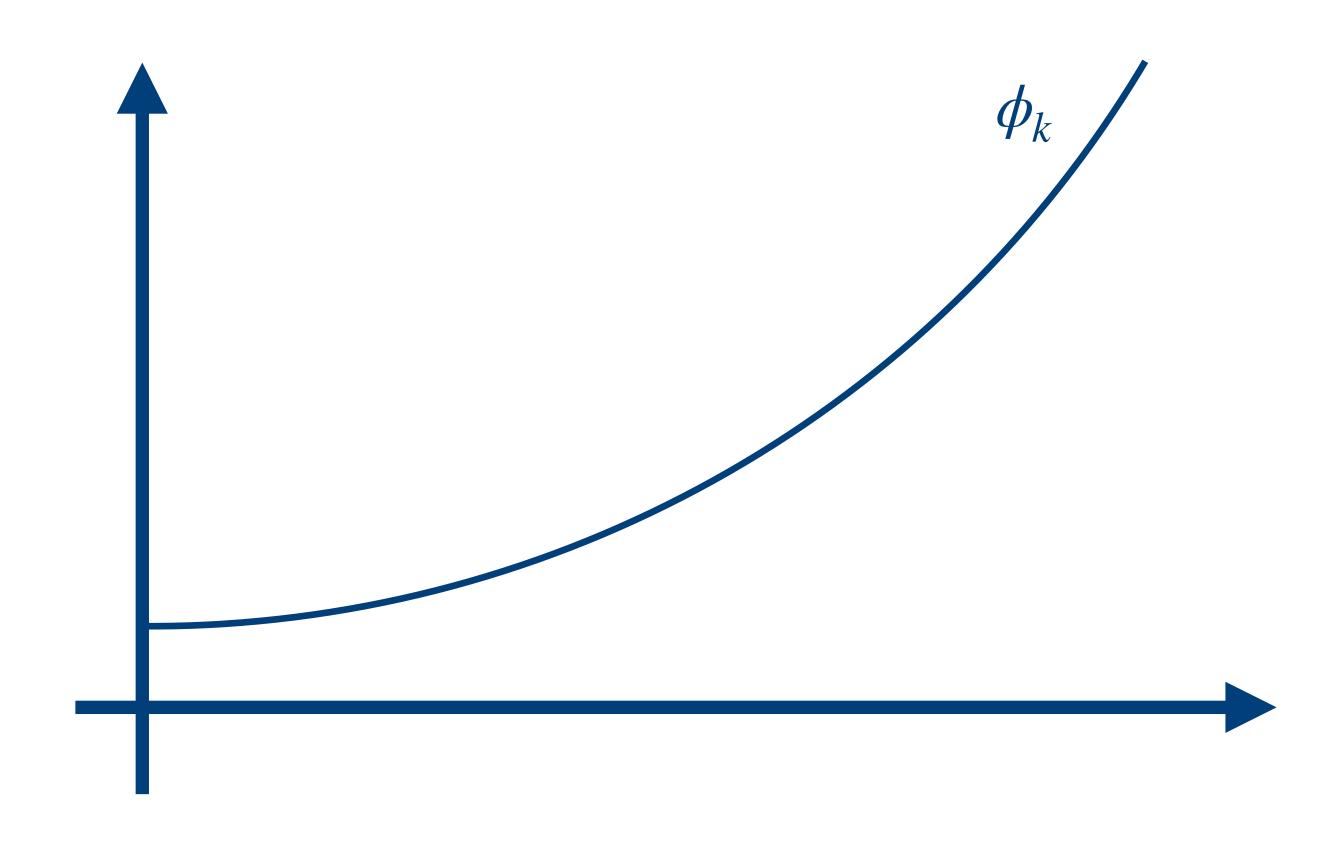
Given sampled data $(b)_i = f(x_i)$, we compute $\hat{f} = \sum_k \hat{c}_k \phi_k$ where

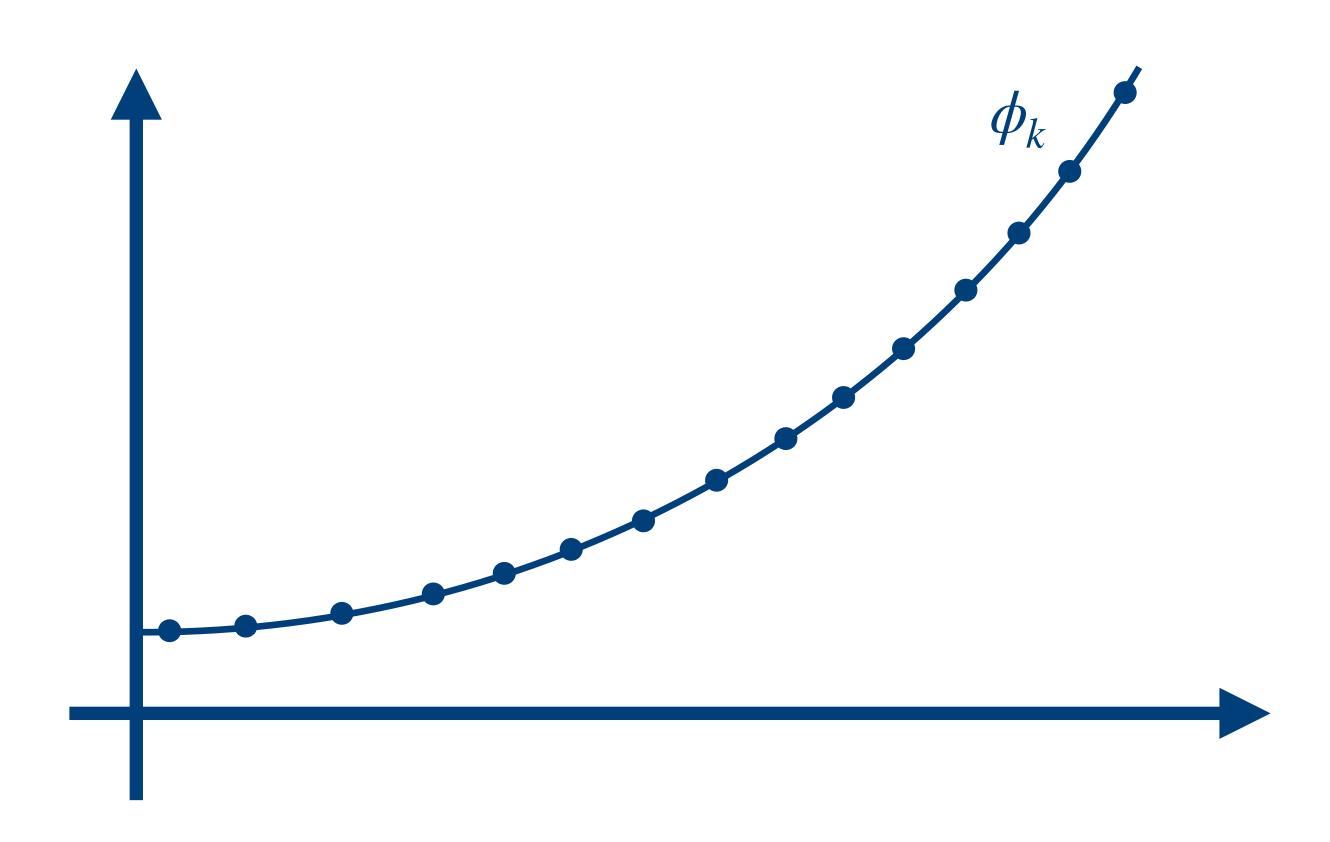
$$\hat{c} = \arg\min_{c} ||Ac - b||_2^2$$
 with $(A)_{i,j} = \phi_j(x_i)$

The (absolute) condition number of $b\mapsto \hat{f}$ satisfies

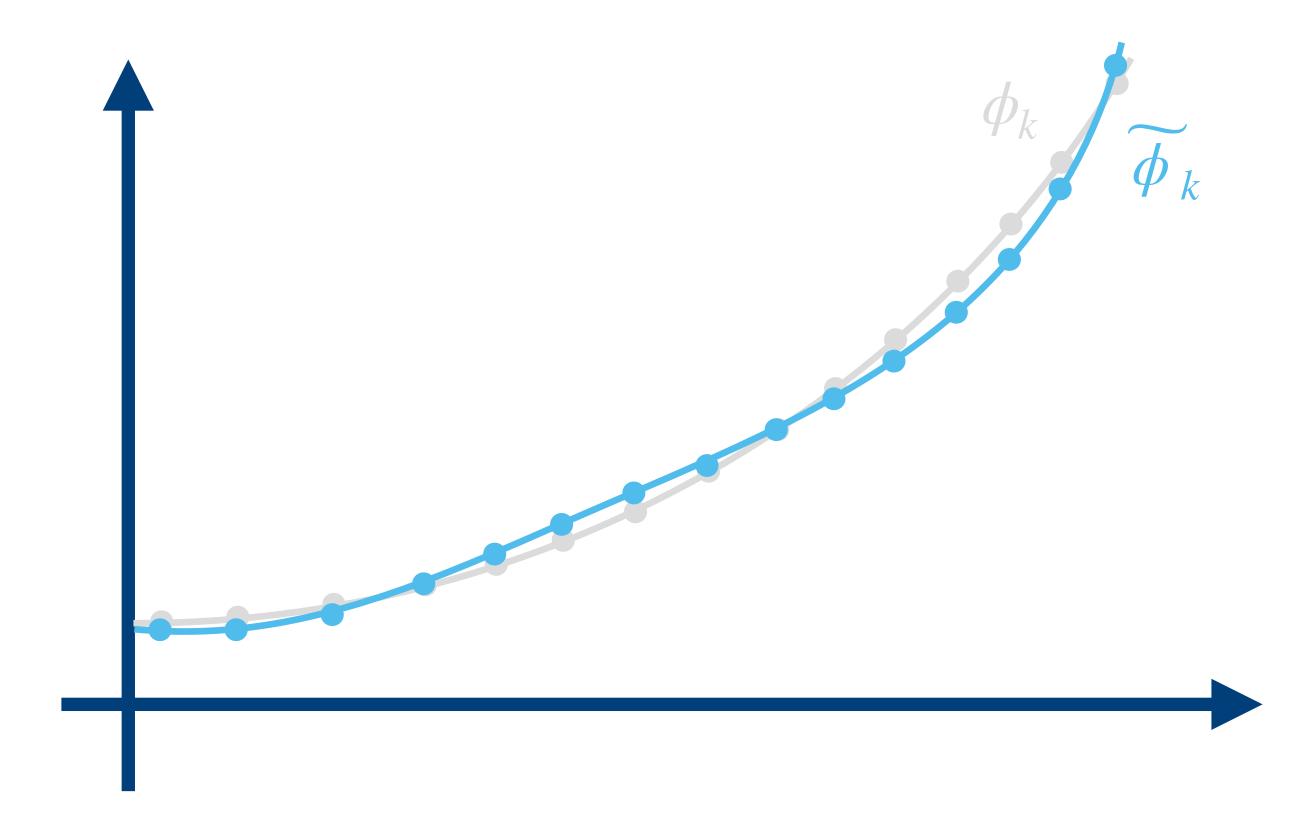
$$\kappa \leq \frac{1}{C} \qquad \text{where } C\|v\| \leq \|\{v(x_i)\}_i\|_2, \quad \forall v \in \text{span}(\phi_k)$$

This does $\overline{\mathsf{NOT}}$ depend on (the condition number of) the basis ϕ_k

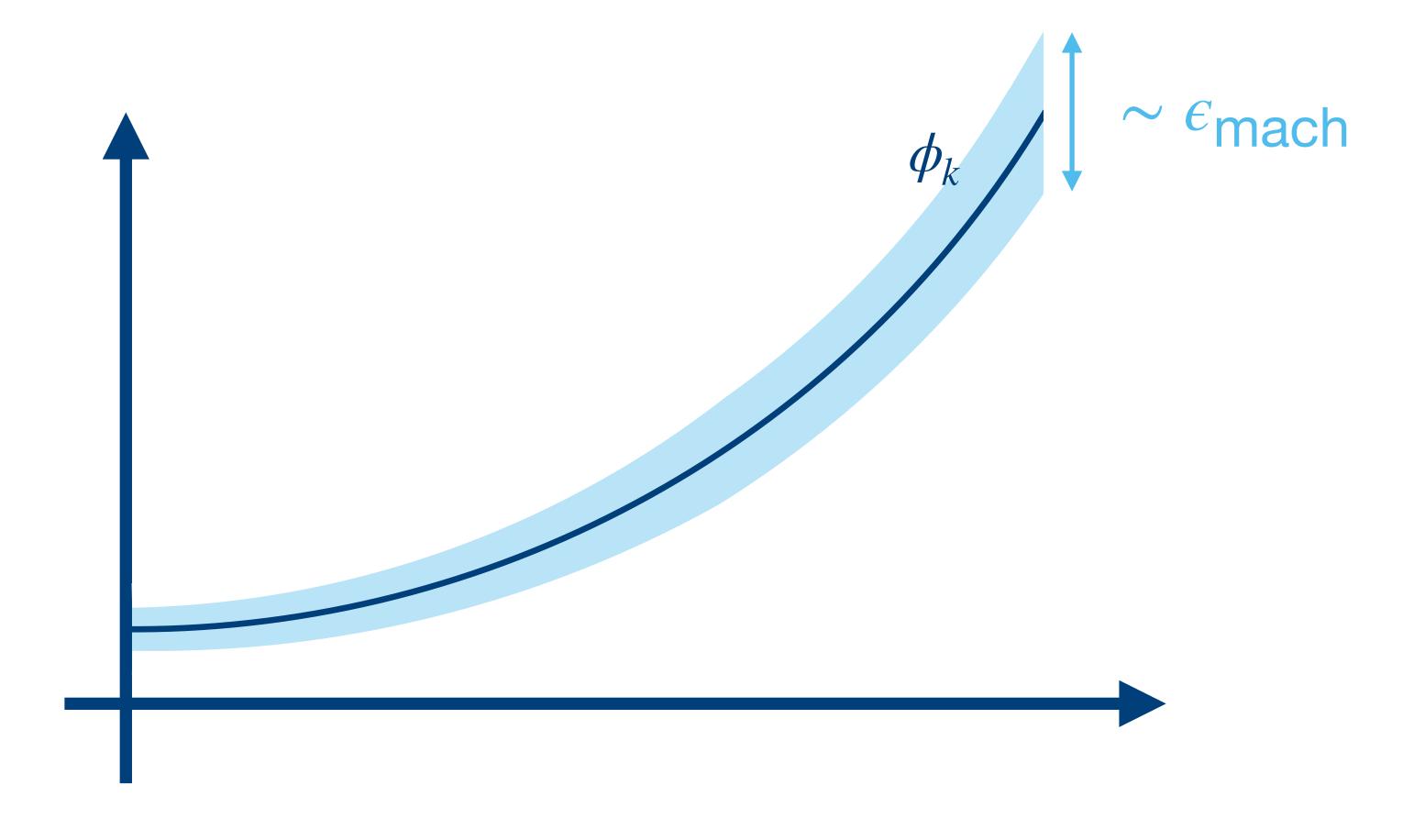




on a computer we work with $\widetilde{\phi}_k$ instead of ϕ_k



we don't know $\overline{\phi}_k$ but we know it lies close to ϕ_k



best approximation error in
$$\operatorname{span}(\phi_k)$$

$$\inf_c \left(\|f - \sum_k c_k \phi_k\| \right)$$
 best approximation error in $\operatorname{span}(\widetilde{\phi}_k)$
$$\leq \inf_c \left(\|f - \sum_k c_k \phi_k\| + \epsilon_{\operatorname{mach}} B \|c\|_2 \right)$$

best approximation error in span(ϕ_k) $\inf_c \left(\|f - \sum_k c_k \phi_k\| \right) \frac{\sup_{\|c\|_2 = 1} \|\sum_k c_k \phi_k\|}{\sum_k c_k \phi_k}$ best approximation error in span($\widetilde{\phi}_k$) $\leq \inf_c \left(\|f - \sum_k c_k \phi_k\| + \epsilon_{\text{mach}} B \|c\|_2 \right)$

best approximation error in
$$\operatorname{span}(\phi_k)$$

$$\inf_c \left(\|f - \sum_k c_k \phi_k\| \right)$$
 best approximation error in $\operatorname{span}(\widetilde{\phi}_k)$
$$\leq \inf_c \left(\|f - \sum_k c_k \phi_k\| + \epsilon_{\operatorname{mach}} B \|c\|_2 \right)$$

• focus on existence of accurate approximations with small coefficients (\rightarrow frames)

best approximation error in
$$\operatorname{span}(\phi_k)$$

$$\inf_c \left(\|f - \sum_k c_k \phi_k\| \right)$$
 best approximation error in $\operatorname{span}(\widetilde{\phi}_k)$
$$\leq \inf_c \left(\|f - \sum_k c_k \phi_k\| + \epsilon_{\operatorname{mach}} B \|c\|_2 \right)$$

- focus on existence of accurate approximations with small coefficients (\rightarrow frames)
- the difference is only significant if the basis is "numerically redundant"

best approximation error in
$$\operatorname{span}(\phi_k)$$

$$\inf_c \left(\|f - \sum_k c_k \phi_k\| \right)$$
 best approximation error in $\operatorname{span}(\widetilde{\phi}_k)$
$$\leq \inf_c \left(\|f - \sum_k c_k \phi_k\| + \epsilon_{\operatorname{mach}} B \|c\|_2 \right)$$

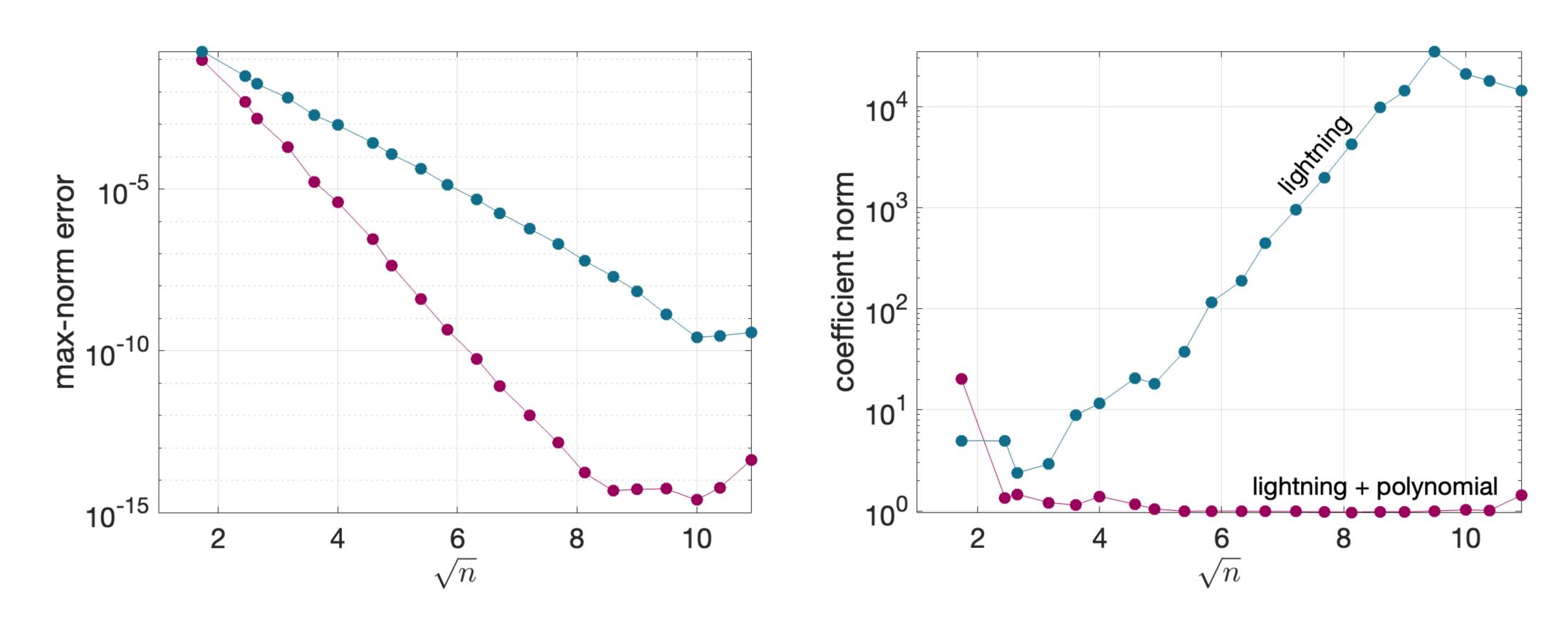
- focus on existence of accurate approximations with small coefficients (\rightarrow frames)
- the difference is only significant if the basis is "numerically redundant"
- in practice: use ℓ^2 -regularization, mind the scaling of ϕ_k

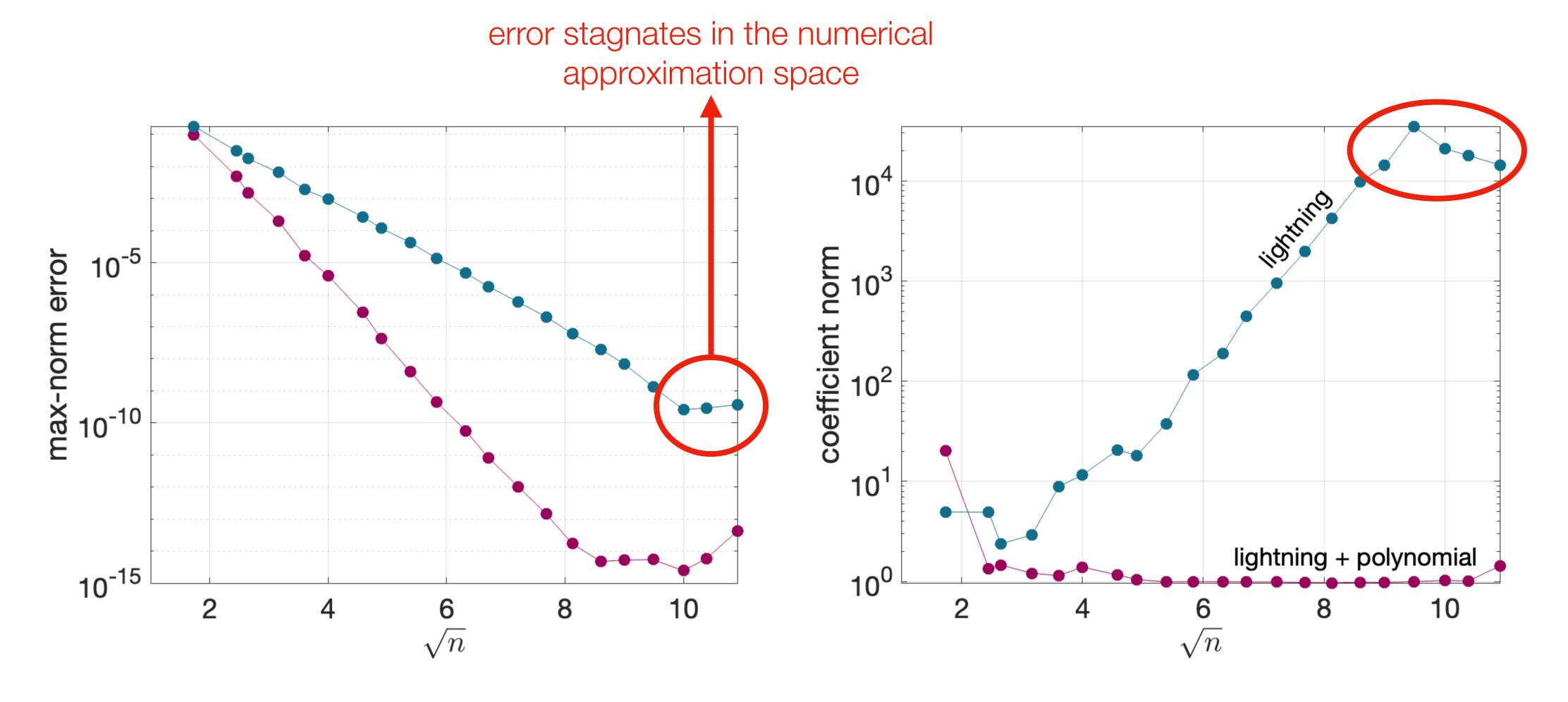
(Adcock and Huybrechs, 2019/2020), (H. and Huybrechs, 2025)

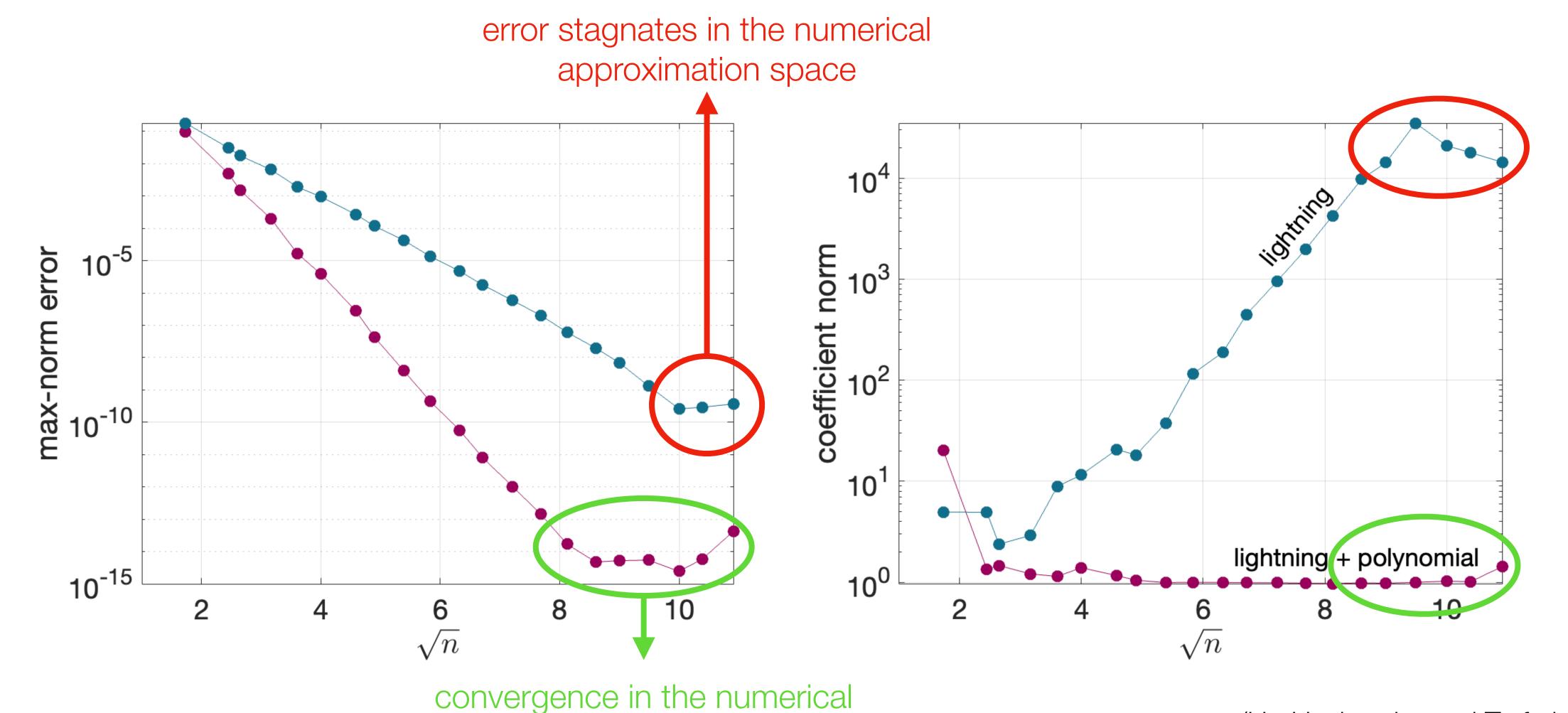
best approximation error in
$$\operatorname{span}(\phi_k)$$

$$\inf_c \left(\|f - \sum_k c_k \phi_k\| \right)$$
 best approximation error in $\operatorname{span}(\widetilde{\phi}_k)$
$$\leq \inf_c \left(\|f - \sum_k c_k \phi_k\| + \epsilon_{\operatorname{mach}} B \|c\|_2 \right)$$

- focus on existence of accurate approximations with small coefficients (\rightarrow frames)
- the difference is only significant if the basis is "numerically redundant"
- in practice: use ℓ^2 -regularization, mind the scaling of ϕ_k







approximation space

(H., Huybrechs and Trefethen, 2023)

Given the <u>locations</u> of the singularities of a function, we can construct rootexponentially converging rational approximations via least squares fitting

Given the locations of the singularities of a function, we can construct rootexponentially converging rational approximations via least squares fitting

many mysteries have been solved in 1D

Given the <u>locations</u> of the singularities of a function, we can construct rootexponentially converging rational approximations via least squares fitting

- many mysteries have been solved in 1D
- lots of exploring to do in higher dimensions

Given the <u>locations</u> of the singularities of a function, we can construct rootexponentially converging rational approximations via least squares fitting

- many mysteries have been solved in 1D
- lots of exploring to do in higher dimensions
- the lightning basis is "ill-conditioned" yet accurate approximations exist in the numerical approximation space \rightarrow no need to panic \odot