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can be arbitrarily ill-conditioned
for non-orthogonal ¢; /

(columns = polynomials + poles) A = Q1) h(z;)
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> Approximation theory in finite precision




Approximation problem:

given f find ¢ such that

J= ZJ- Cj¢j

L*(X)

IS small
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Rounding errors can result In
® o |oss of accuracy (Adcock, Huybrechs 2019/2020)
® o decrease in required data (H., Huybrechs 2025)
compared to the “analytical case”
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appear to be the same

numerical approximation error
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Numerical approximation
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where

* € X €mach IS Adue to finite-precision arithmetic
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We want

%

vz =Y wive)l? Mgy = | vidx ¥y e v=span(iaiLy
=1

X

We need a sample

/ point here!

using as few sample points m > n as possible. A

What is a good choice for the sample points?
[.e., which points are more important than others? — 1

— Every v € V should be visible on the grid, also functions that spike locally.

How much can a function spike around Xx?
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Christoffel function

The function

k(x) = max  |v(x)|?
VEV&HVHLZ(X)ZI

IS known as the inverse of the Christoffel function

o fX k(x)dx = n where n = dim(V)
o k(x)= 2 |ufx) |* where {u;}" | is an orthonormal basis for V (G)i.j =P D) 1200y

o k() = D* G D) /
where span({¢;}._;) =V, ®x) = [¢1(x) qbn(x)]T and G is the Gram matrix



Christoffel sampling

(Cohen and Migliorati, 2017)
f one draws m = O(nlog(n)) samples according to

du = wdx with w(x) = k(x)/n
then, with high probability,
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Christoffel sampling

M V-

(Cohen and Migliorati, 2017)

f one draws m = O(nlog(n)) samples according to
du = wdx with w(x) = k(x)/n

then, with high probability,

||97c*d—f| < min

L’ (X) ceC"

976—]””

for the weighted discrete least squares approximation

2
M(Tc—f) | :

c, = arg min
ceC”

corresponds to

\/Wl v(x;) ... Mv(xm)_

with x; ~ u and w; = w(x;)/m
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Christoffel function

o |2
k() = max TEO e (G 42 oo

ceC".T ¢#£0 “gc“%z + GZHCH%

singular values of I

® computable in finite precision for non-orthogonal bases

° IX kedx = n¢ where n¢ is the numerical dimension

= n for an orthonormal basis

i L <
o T\2 2
Oi (‘/ ) +e < n for a heavily non-orthogonal basis

(H. and Huybrechs, 2025)



Christoffel sampling

(H. and Huybrechs, 2025)

If one draws m = O(n‘log(n®)) samples according to
du = wdx with w(x) = k(x)/n®

then, with high probability,

Ic,—f < min
L*(X)  ceC”

T | oy +ellellz

for the regularized weighted discrete least squares approximation

2
M(Tc~f) | +e€llell3

c, = argmin
ceC”
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1D model of

= Fourler series restricted to a smaller domain
= non-orthogonal basis

k(x) grows much larger near the boundaries
than the middle — we need to cluster points there

IN reality, people compute stable least squares fits with —_—
a small number of uniformly random points ¢. — Fourier series

How is this possible? — k°(x) is (approximately) uniform

(H. and Huybrechs, 2025)
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For a given non-orthogonal basis {¢;}_; ...

We can construct an efficient sampler . using

we don’t know

an efficient A ... k(x) = P(x)* (G + €’ D(x)

We can approximate the Gram matrix using we don’t know G....

(G)ij = Dps D)2 = (M, M),




A “chicken or the egg” problem

For a given non-orthogonal basis {¢;}_; ...

gss A

» D)
We can construct an efficient sampler 4 using |
we don’t know

an efficient A ... k(x) = P(x)* (G + €’ D(x)

We can approximate the Gram matrix using we don’t know G....

(G);j = Pis $j)12 = (M, Mp;),




Brute force approach

(Dolbeault and Cohen, 2022)
e Approximate G using a possibly huge number of uniformly random points

e Compute m = O(nlog(n)) good samples for function approximation using
Christoffel sampling

— Good If the main cost lies in evaluating the functions to be approximated
(i.e., approximating G is considered an “offline cost”)
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to k*

Consider m = O(nlog(n)) samples drawn from
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Refinement-based Christoffel sampling

(H. and Adcock, 2025)

Consider m = O(nlog(n)) samples drawn from

du = wdx where w @(x)*(g(z) + 2D~ 'd(x)

Approximate the Gram matrix

(G);; = (P;s ij>L2 R (M P;s %¢j>2 B (5(2))@]'




Refinement-based Christoffel sampling

(H. and Adcock, 2025)

iteration [

Consider m = O(nlog(n)) samples drawn from

du = wdx where w @(x)*(a(l_l) + 2D~ 'd(x)

Approximate the Gram matrix

(G)i,j = (¢ ¢j>L2 R (M P, %gbj)Z — (5(1))i,j

(disclaimer: this is a slight simplification)
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G should be computed using

O(|k|| ., log(n)) uniformly random
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(Dolbeault and Cohen, 2022)

G should be computed using

O(|k|| ., log(n)) uniformly random
sample points

(H. and Adcock, 2025)

Converges in O(log ||k°|| ) iterations and
uses O(nlog(n)) samples per iteration
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Conclusions

® Non-orthogonal bases require approximation theory “in finite precision”

Ic,—f < min
LX)  ceC”

Pfc—f|

+c€|lcC
o, Felellz

® [he inverse Christoffel function quantifies the importance of each point for

discrete approximation

® One can define a numerical Christoffel function that takes into account the
effects of finite precision

e Refinement-based Christoffel sampling is an efficient algorithm for generating
samples when using a non-orthogonal basis
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