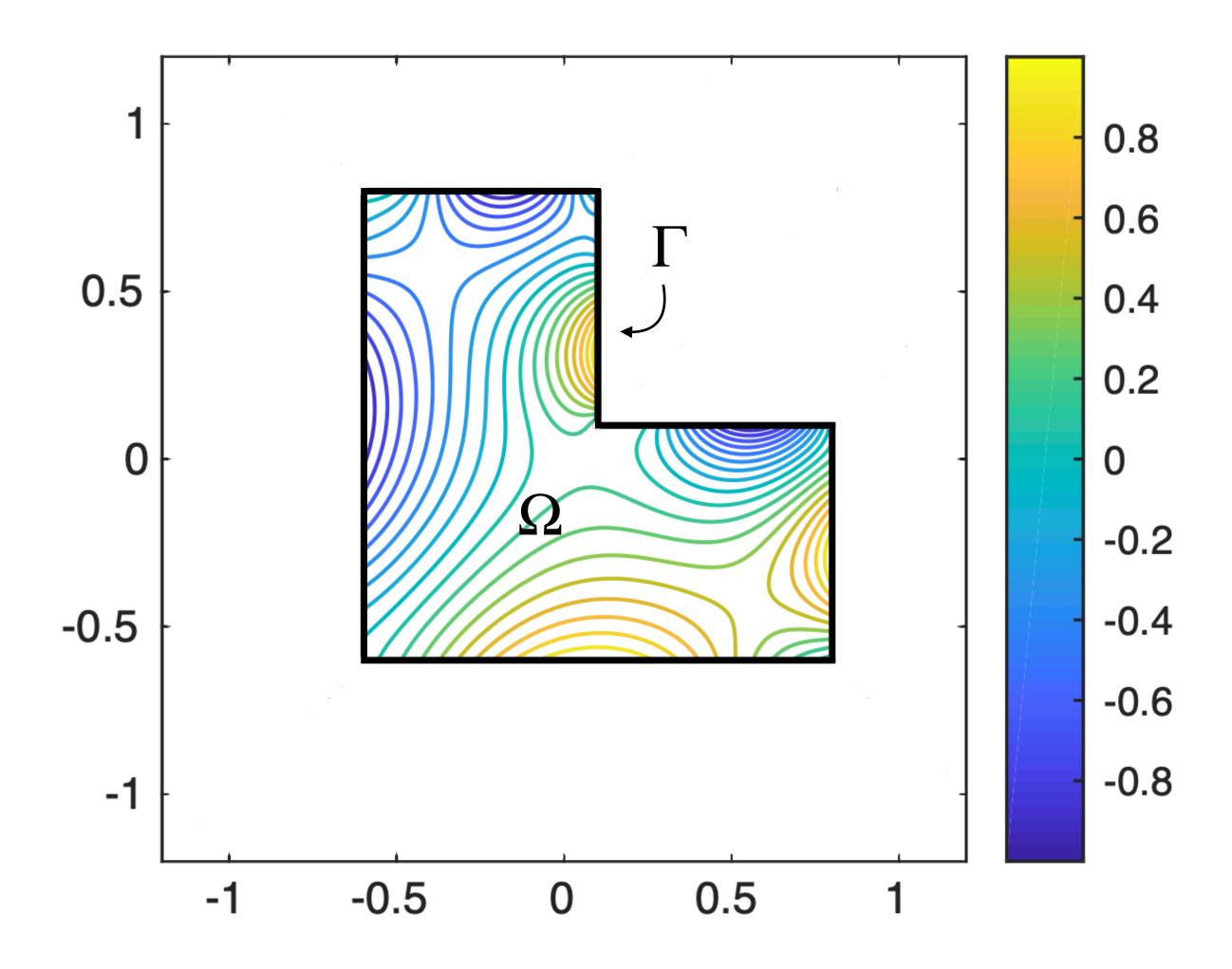
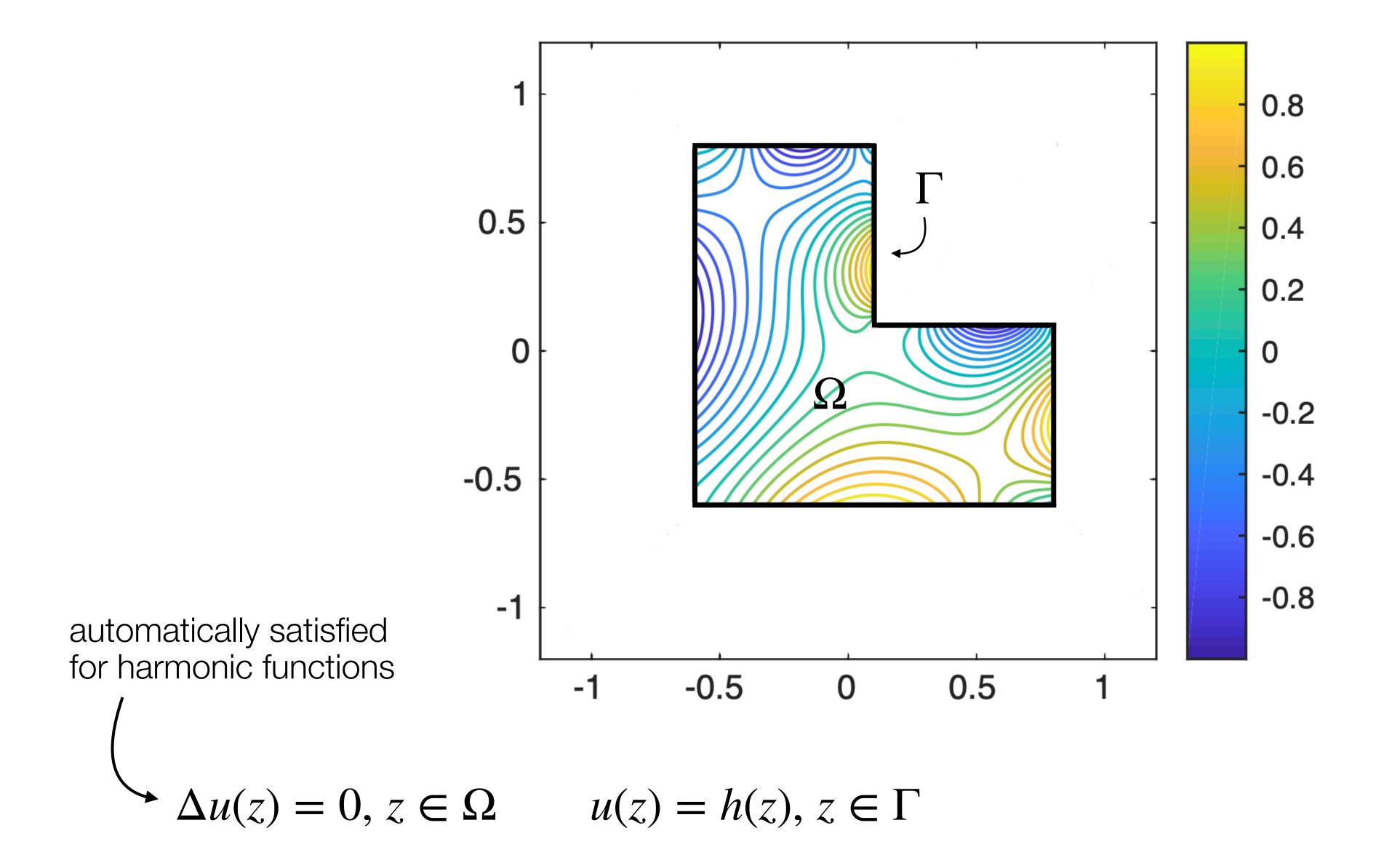


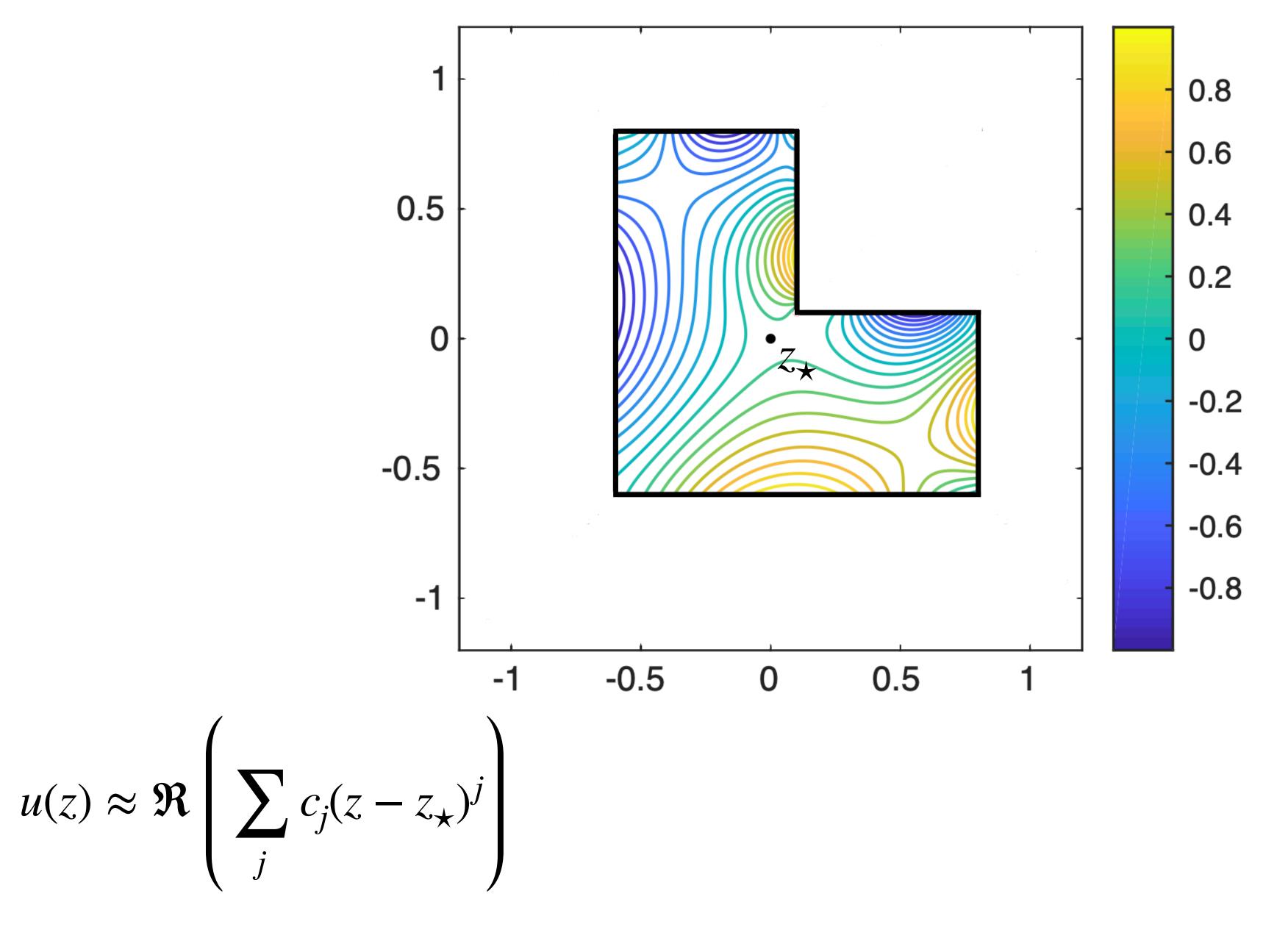
Sampling for function approximation in non-orthogonal bases

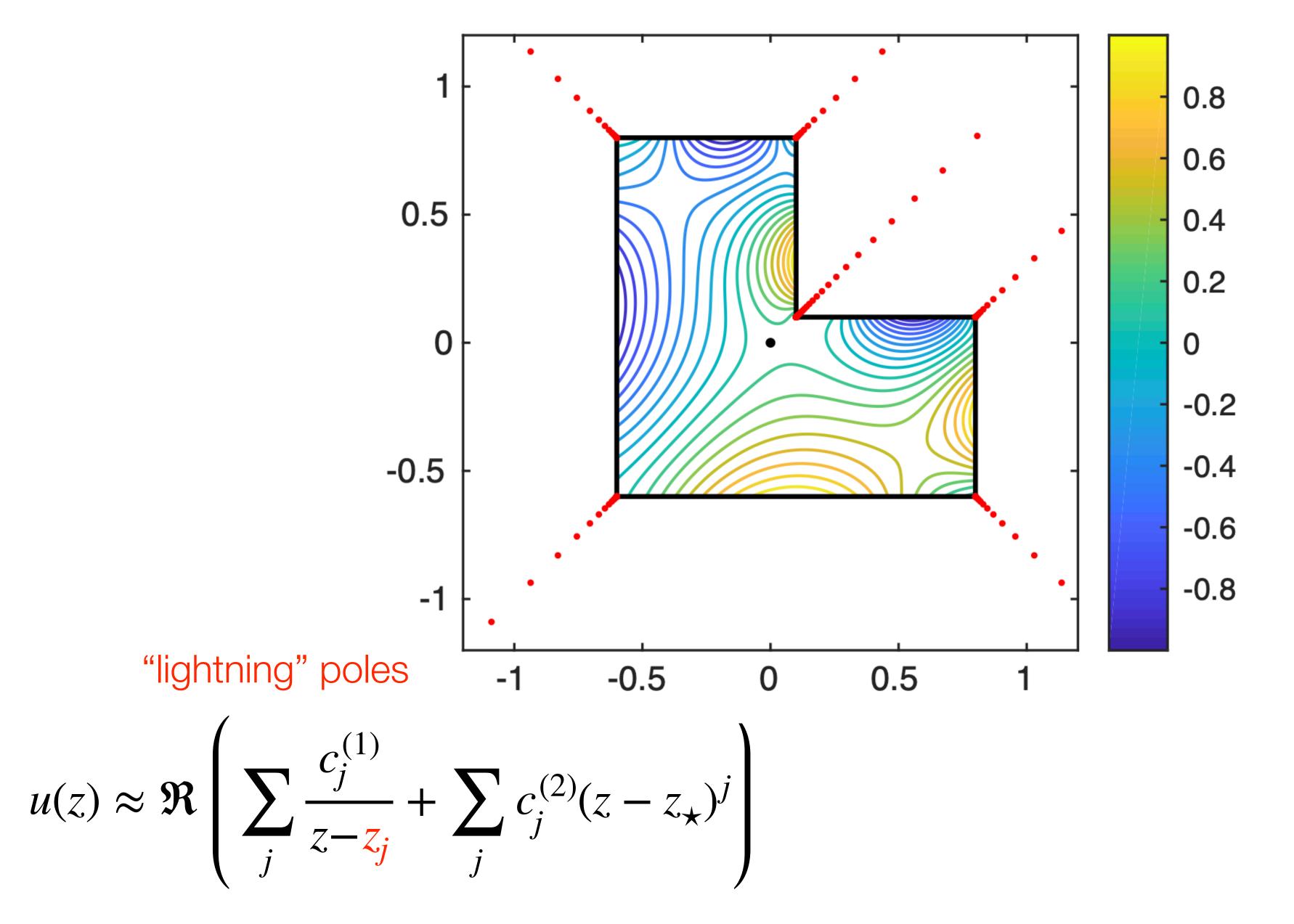
Astrid Herremans joint work with Daan Huybrechs, Ben Adcock and Lloyd Nick Trefethen

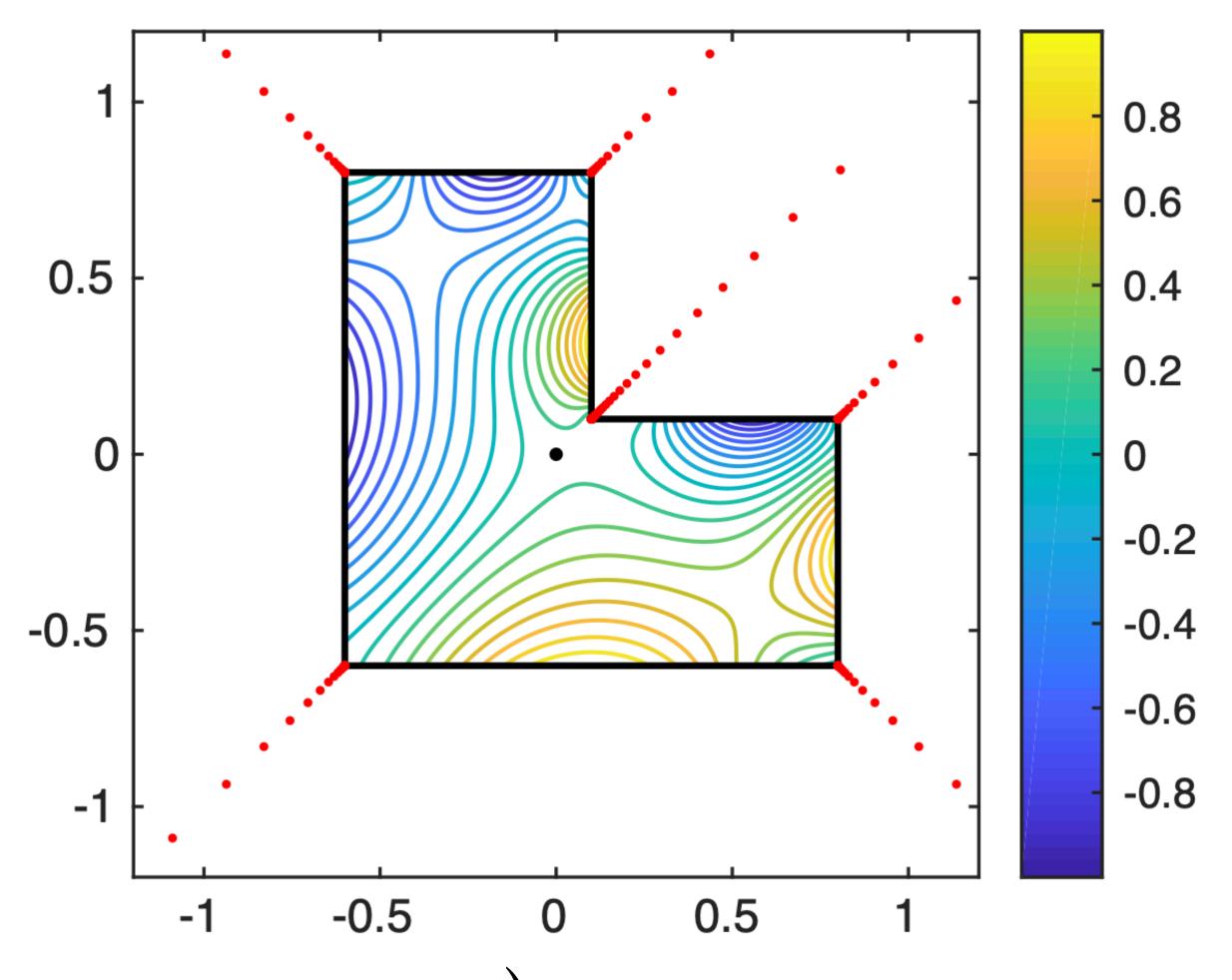


$$\Delta u(z) = 0, z \in \Omega$$
 $u(z) = h(z), z \in \Gamma$





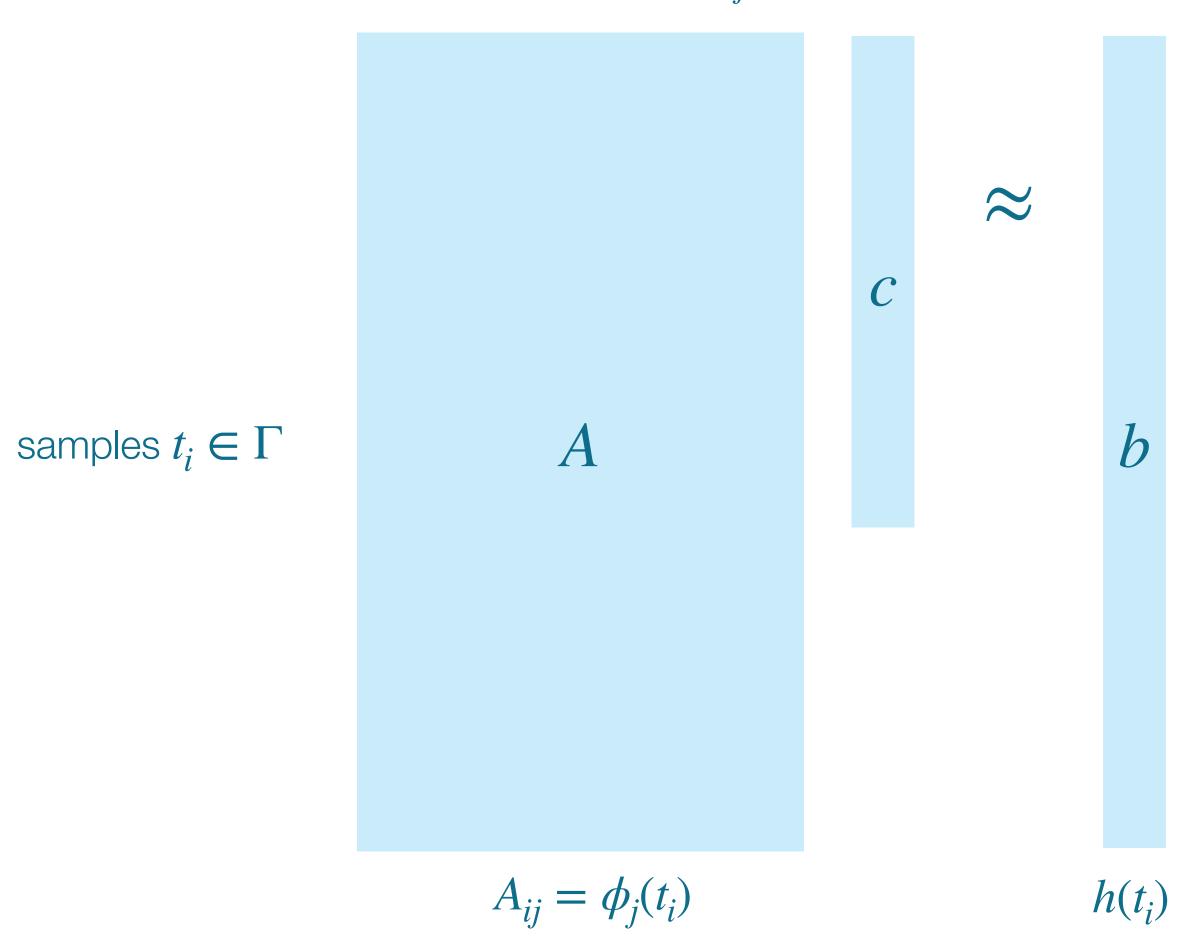


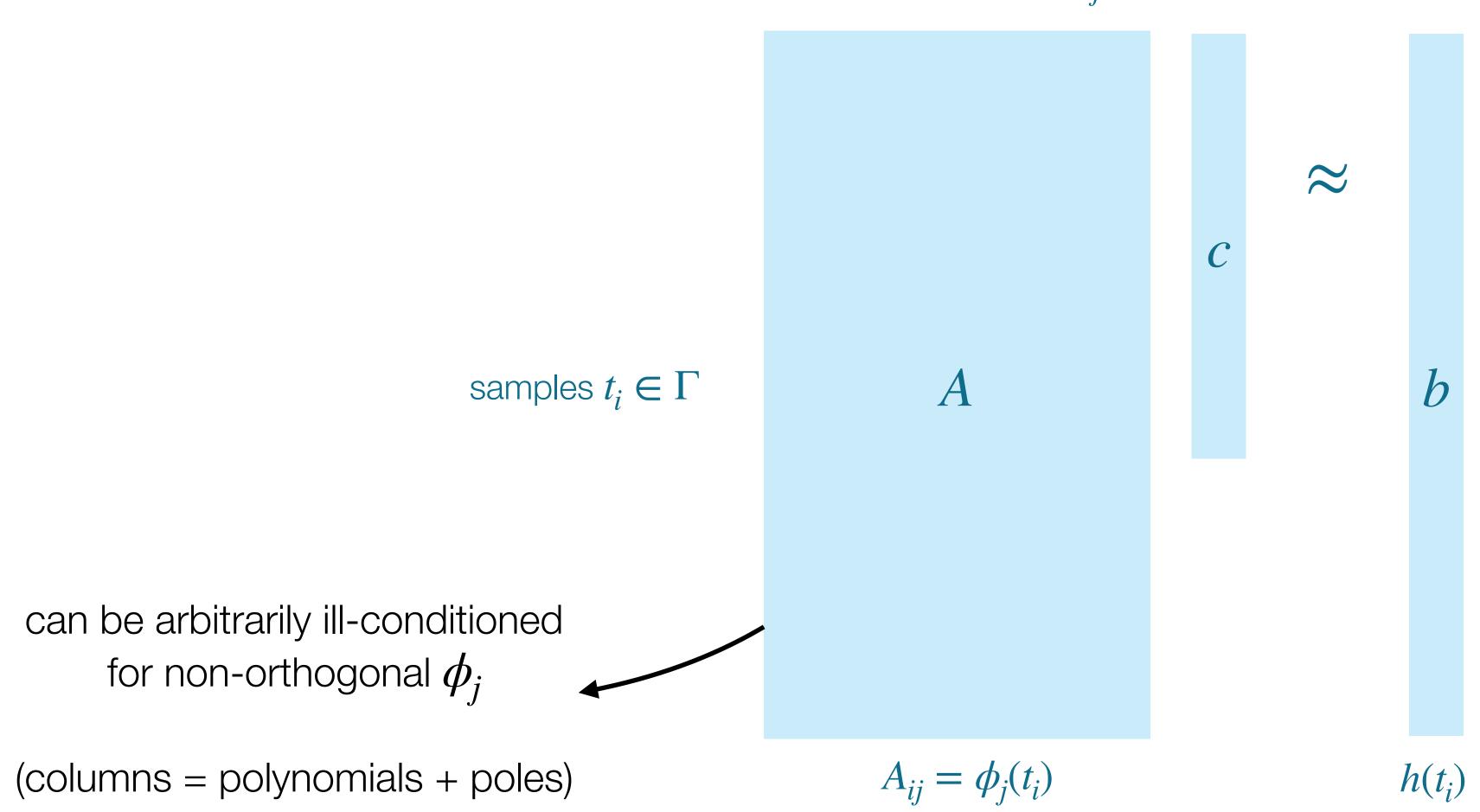


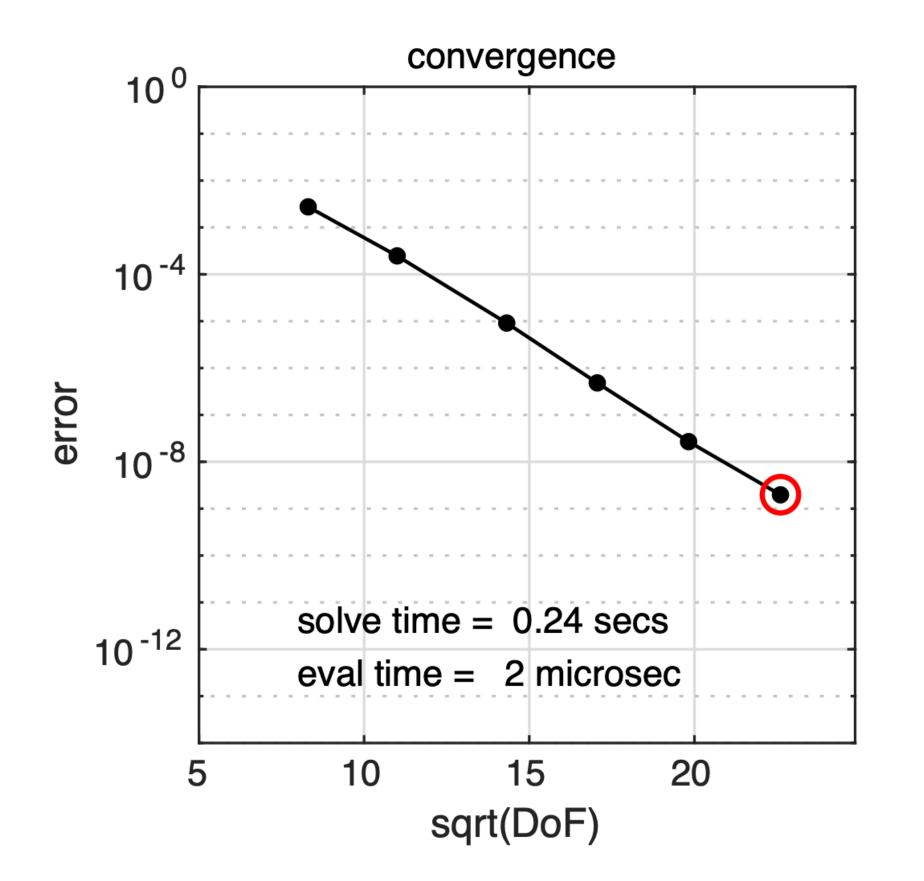
$$u(z) \approx \Re\left(\sum_{j} \frac{c_{j}^{(1)}}{z - z_{j}} + \sum_{j} c_{j}^{(2)}(z - z_{\star})^{j}\right) \qquad \text{find coefficients } c_{j}^{(1)} \text{ and } c_{j}^{(2)} \text{ via } u(z) = h(z), z \in \Gamma$$

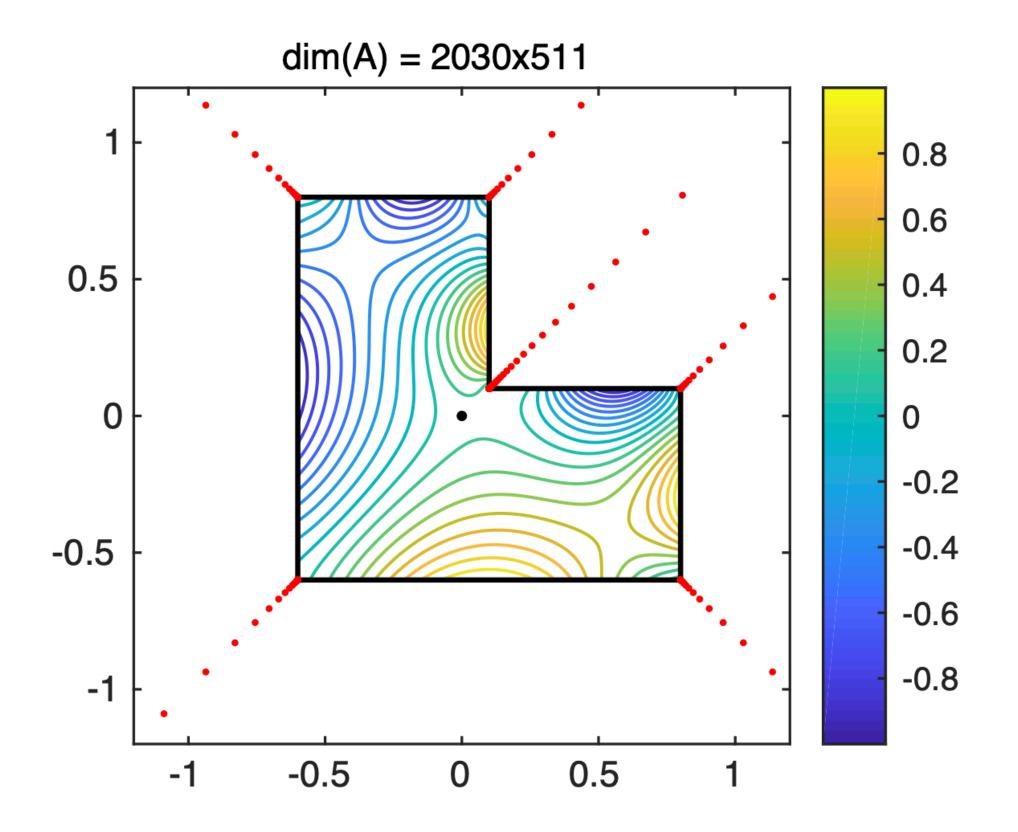
$$\text{(Gopal and Trefethen, 2019)}$$

basis functions $\pmb{\phi}_j$



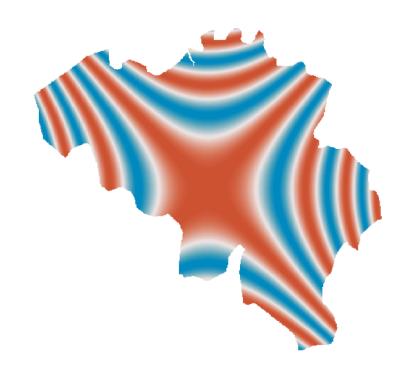




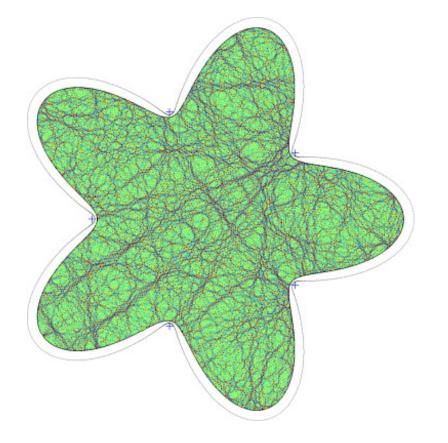


 $cond(A) \gtrsim 10^{16}$

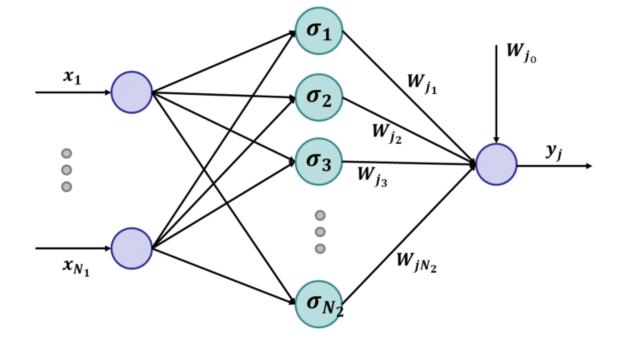
Non-orthogonal bases



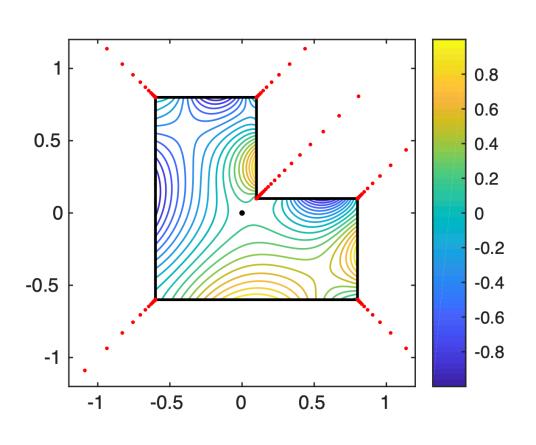
approximating on irregular domains



Trefftz methods for solving PDEs



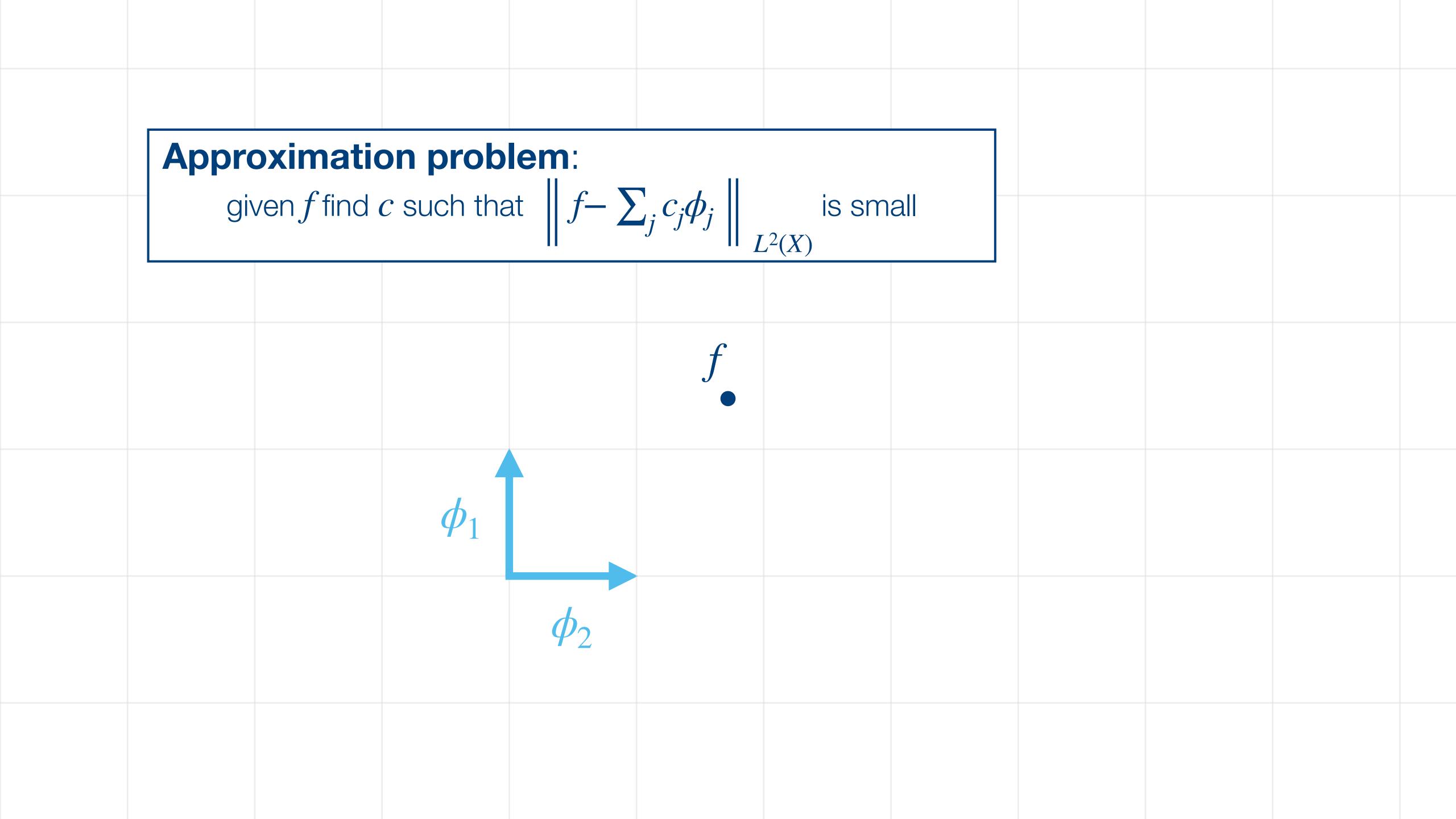
adaptive basis viewpoint of neural networks

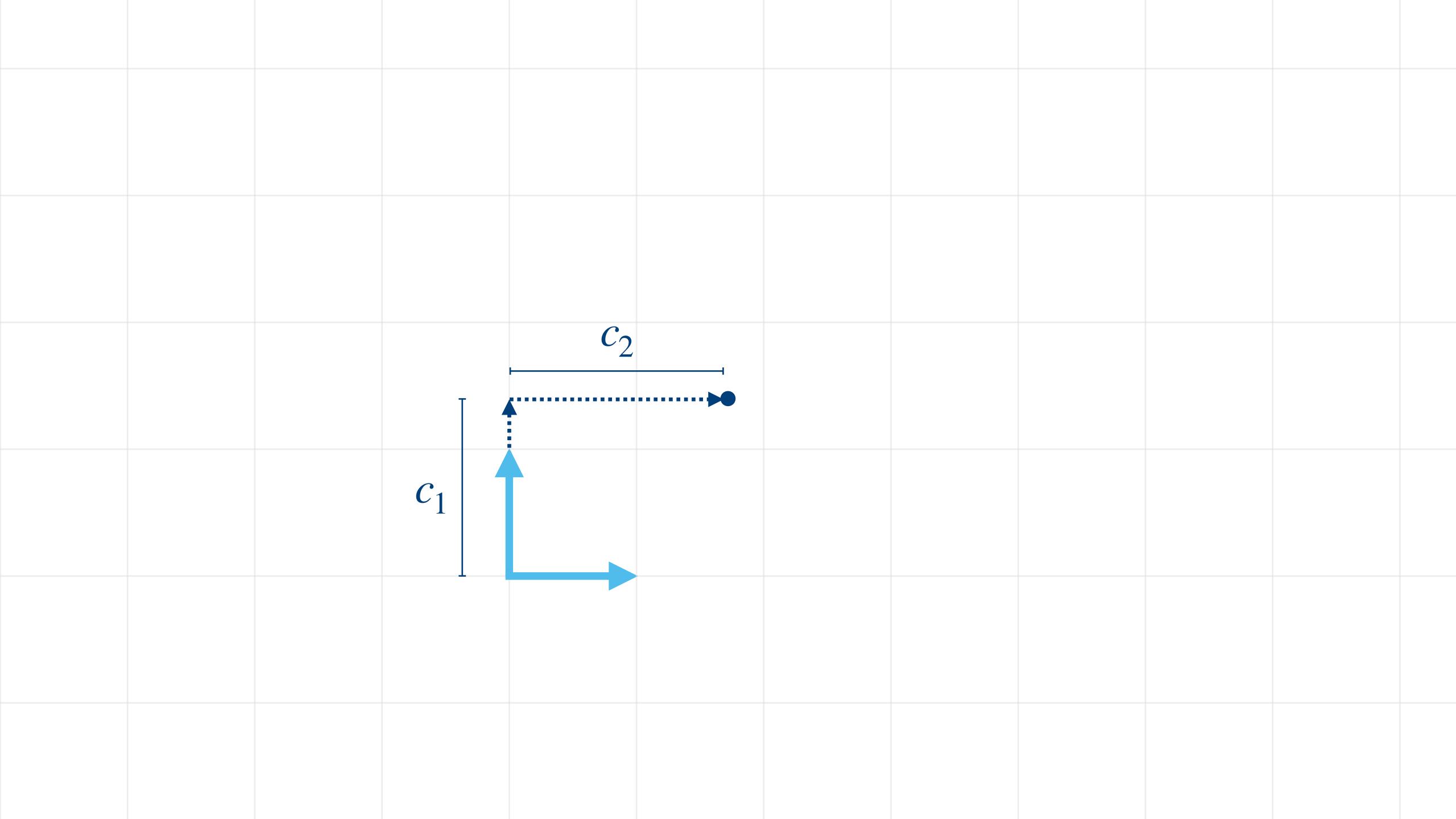


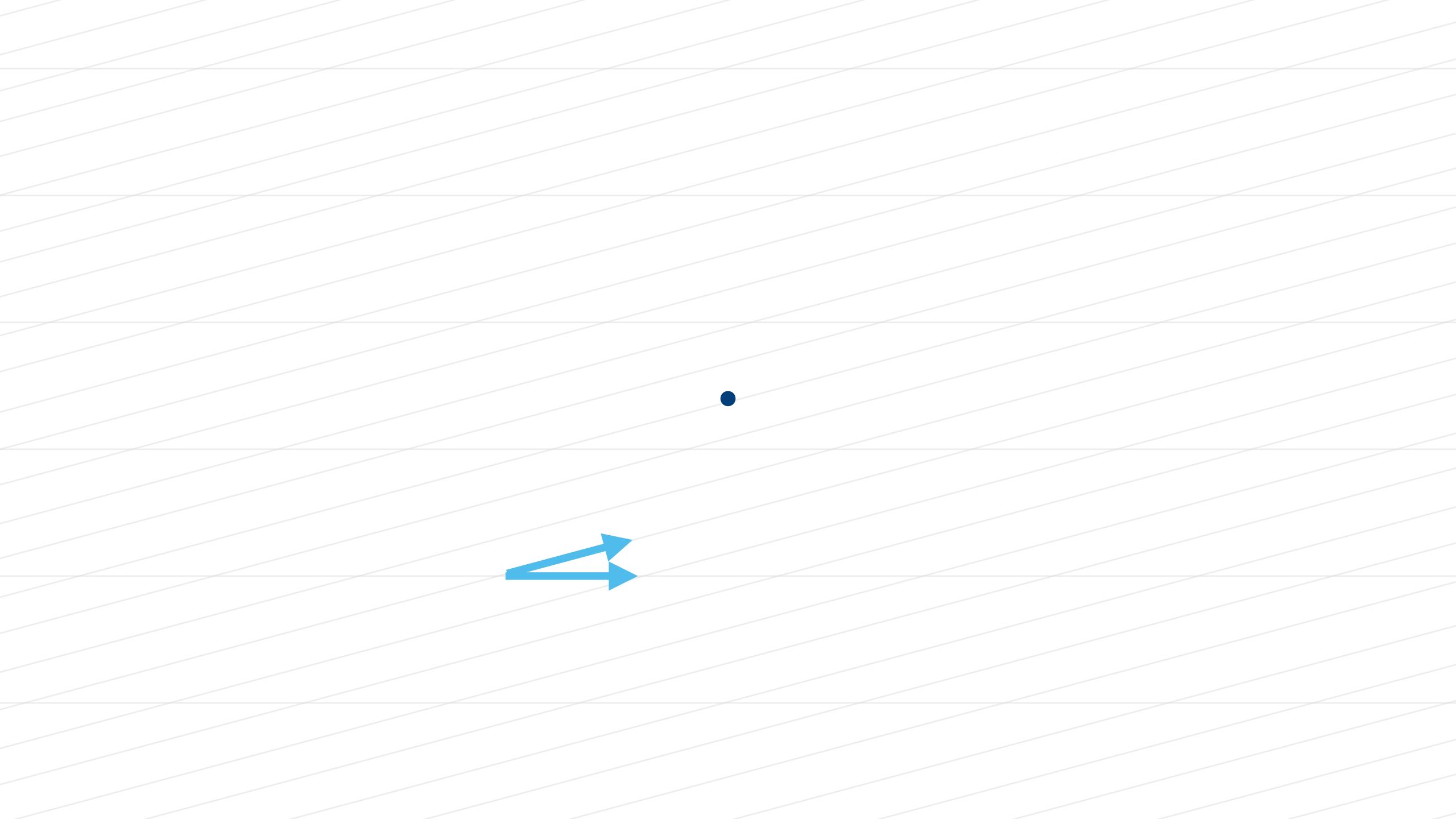
incorporating expert knowledge on f

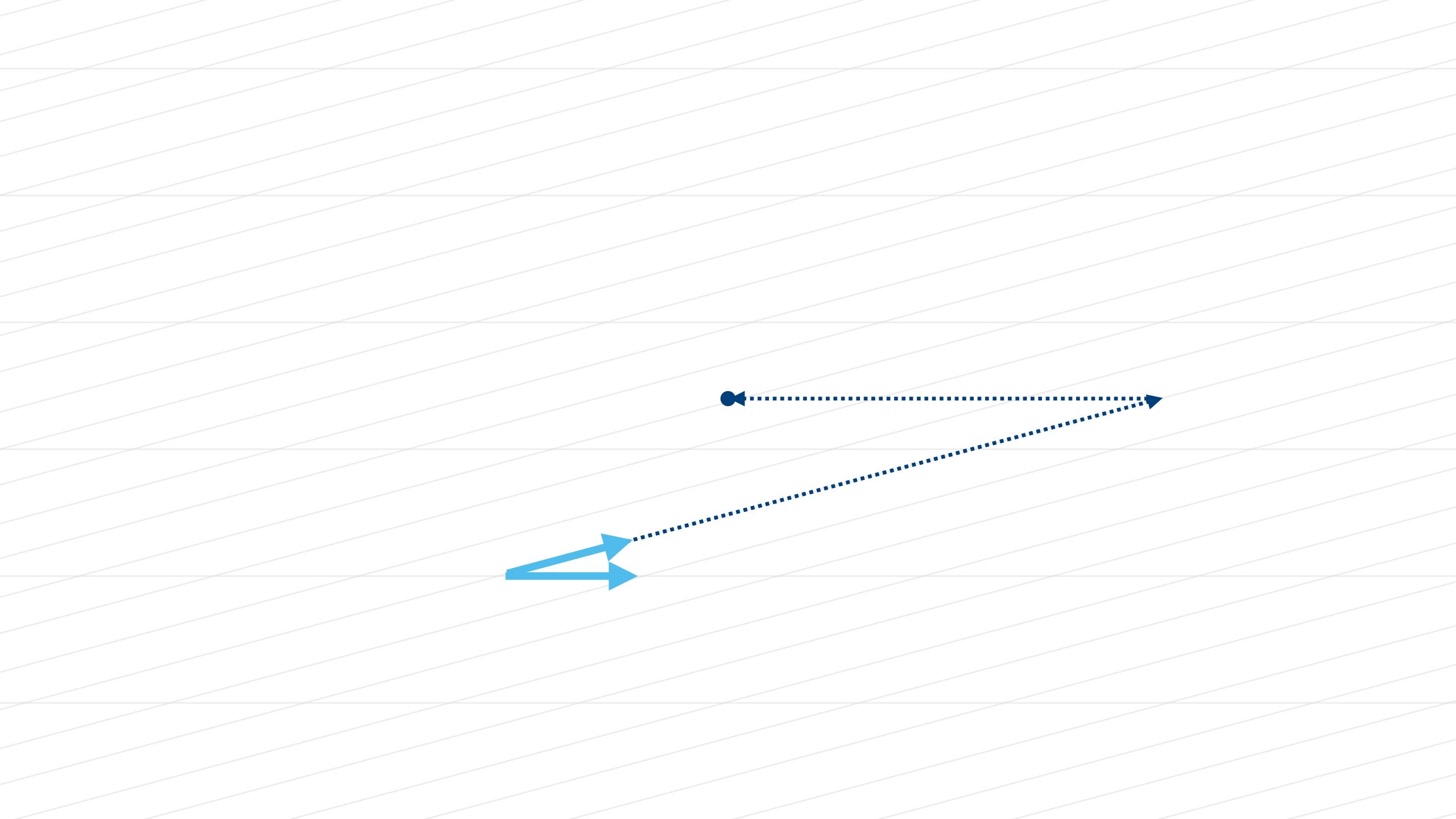
- Approximation theory in finite precision
- An intuitive randomised sampling strategy
- Efficient sampling for non-orthogonal bases

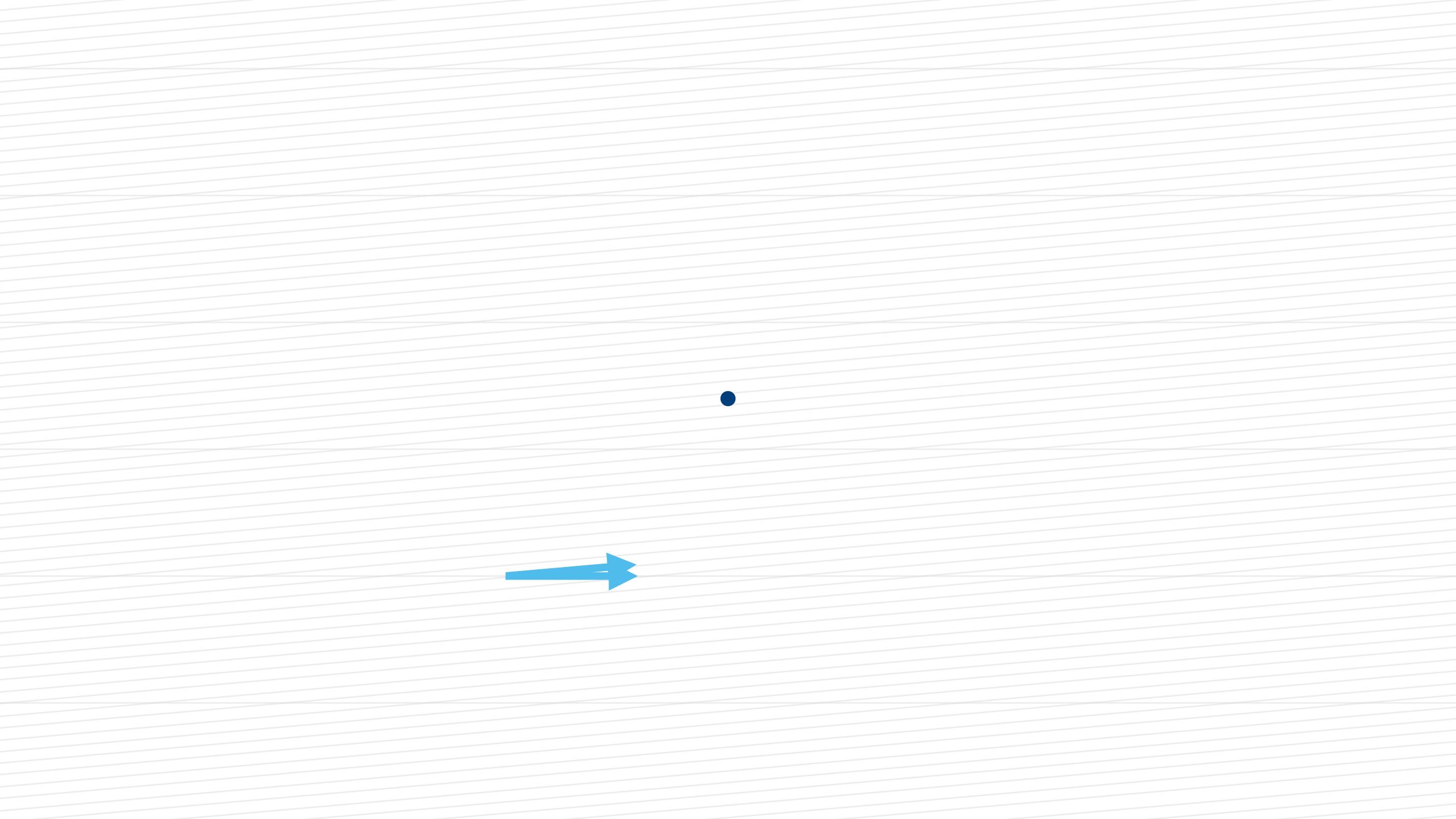
- Approximation theory in finite precision
- An intuitive randomised sampling strategy
- Efficient sampling for non-orthogonal bases

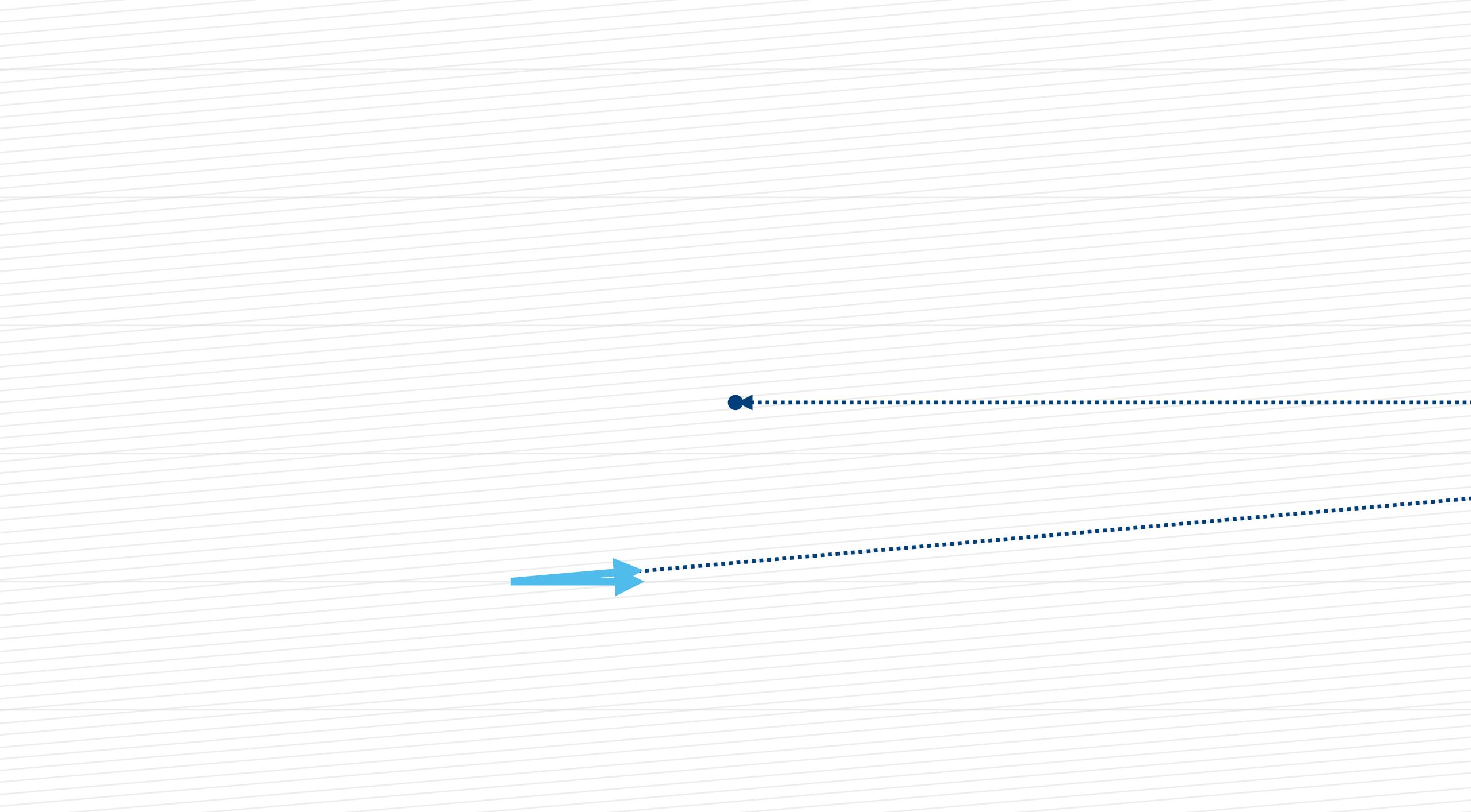




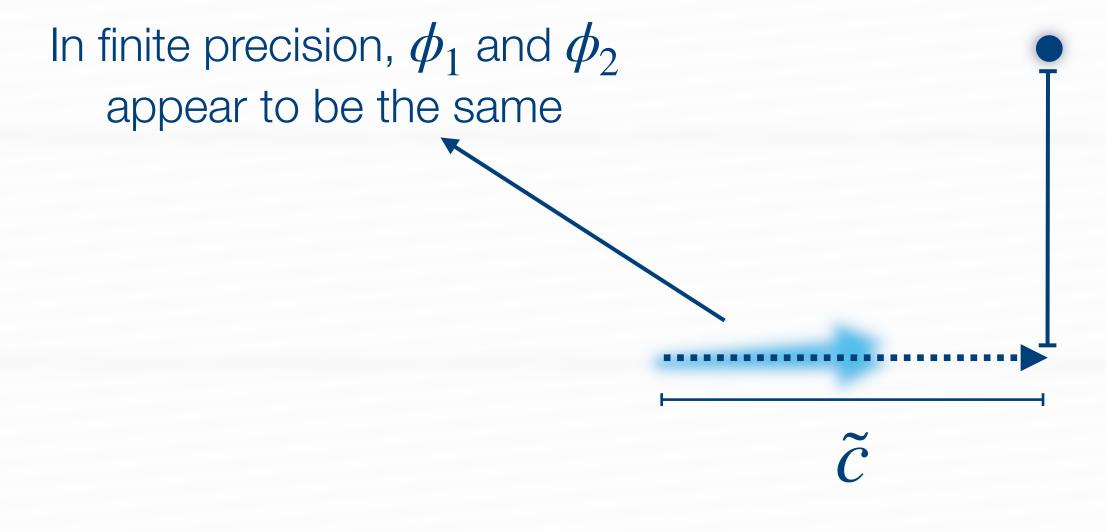








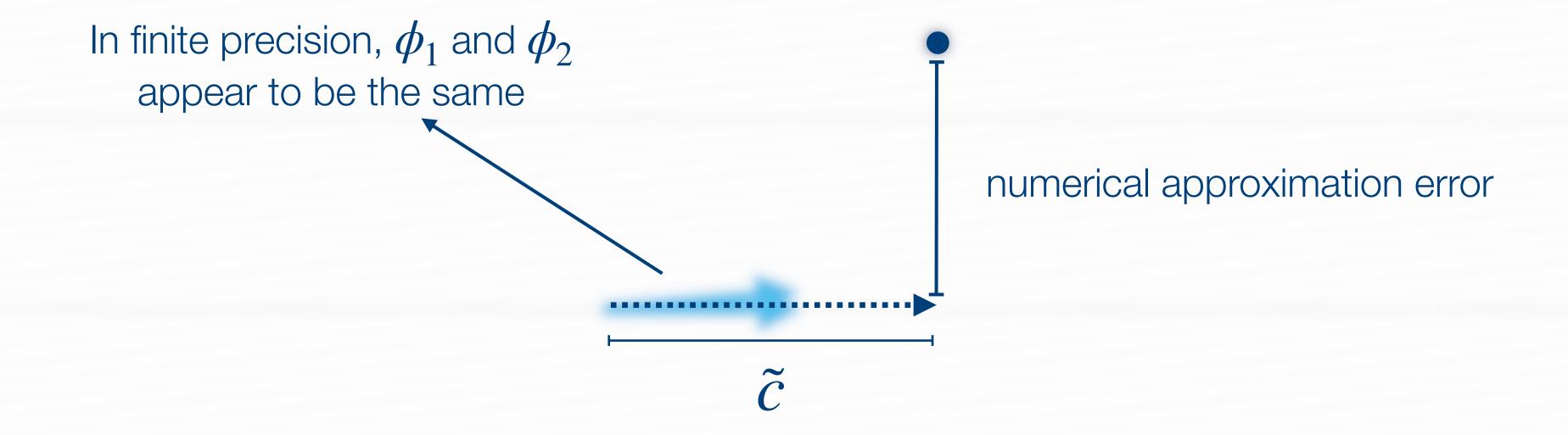
In finite precision, ϕ_1 and ϕ_2 appear to be the same



numerical approximation error

Rounding errors can result in

- a loss of accuracy
- a decrease in required data compared to the "analytical case"

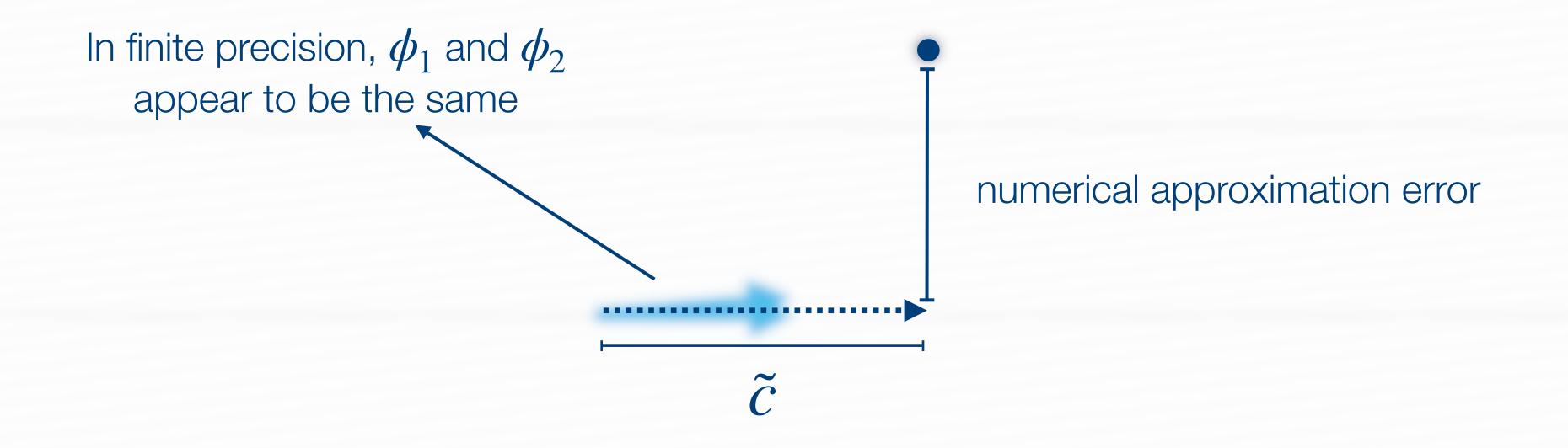


Rounding errors can result in

- a loss of accuracy
- a decrease in required data compared to the "analytical case"

(Adcock, Huybrechs 2019/2020)

(H., Huybrechs 2025)



$$c_d = \arg\min_{c \in \mathbb{C}^n} \left\| \mathcal{M}(\mathcal{T}c - f) \right\|_2^2$$

where

• $\mathcal{T}: c \mapsto \sum_{i=1}^n c_i \phi_i$ is the synthesis operator

•
$$\mathcal{M}: v \mapsto \left[\sqrt{w_1}v(x_1) \dots \sqrt{w_m}v(x_m)\right]^{\mathsf{T}}$$
 is a sampling operator

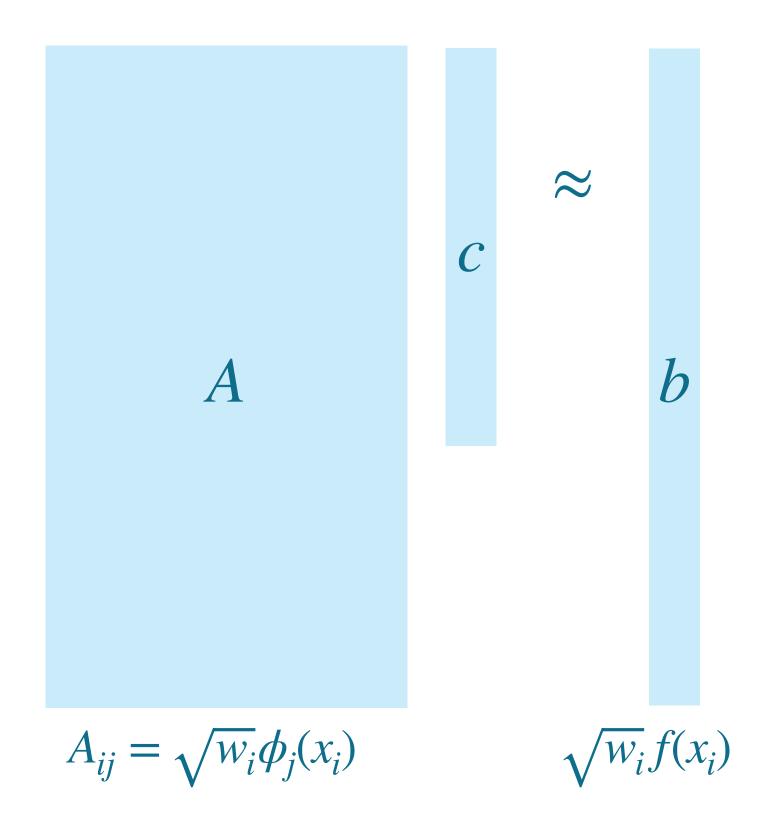
$$c_d = \arg\min_{c \in \mathbb{C}^n} \left\| \mathcal{M}(\mathcal{T}c - f) \right\|_2^2$$

$$\|Ac - b\|_2^2$$

where

• $\mathcal{T}: c \mapsto \sum_{i=1}^n c_i \phi_i$ is the synthesis operator

•
$$\mathcal{M}: v \mapsto \left[\sqrt{w_1}v(x_1) \dots \sqrt{w_m}v(x_m)\right]^{\mathsf{T}}$$
 is a sampling operator



$$c_d = \arg\min_{c \in \mathbb{C}^n} \left\| \mathcal{M}(\mathcal{T}c - f) \right\|_2^2$$

$$\|Ac - b\|_2^2$$

where

• $\mathcal{T}: c \mapsto \sum_{i=1}^n c_i \phi_i$ is the synthesis operator

•
$$\mathcal{M}: v \mapsto \left[\sqrt{w_1}v(x_1) \dots \sqrt{w_m}v(x_m)\right]^{\top}$$
 is a sampling operator

When $\|\mathcal{M}\cdot\|_2 \approx \|\cdot\|_{L^2(X)}$, we get

$$\left\| \mathcal{T}c_d - f \right\|_{L^2(X)} \lesssim \min_{c \in \mathbb{C}^n} \left\| \mathcal{T}c - f \right\|_{L^2(X)}$$

$$\widetilde{c}_d = \arg\min_{c \in \mathbb{C}^n} \left\| \mathcal{M}(\mathcal{T}c - f) \right\|_2^2 + \epsilon^2 \|c\|_2^2$$

$$\|Ac - b\|_2^2$$

where

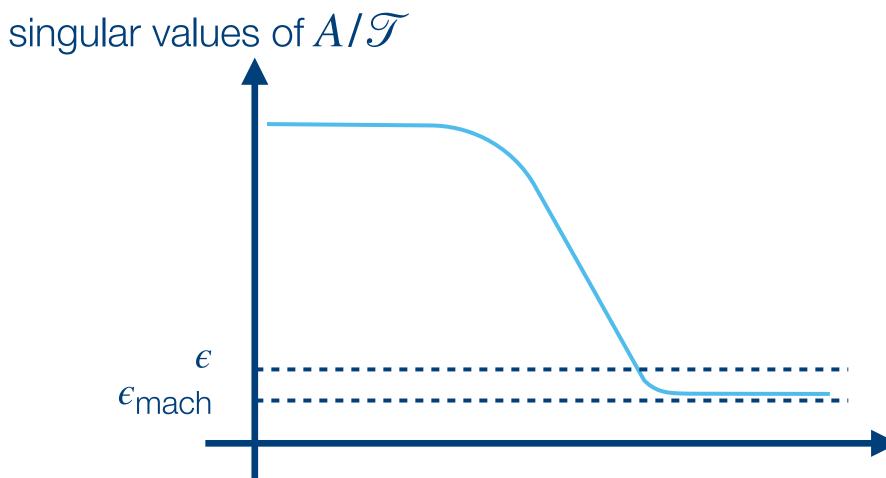
• $\epsilon \propto \epsilon_{\mathrm{mach}}$ is due to finite-precision arithmetic

$$\widetilde{c}_d = \arg\min_{c \in \mathbb{C}^n} \left\| \mathcal{M}(\mathcal{T}c - f) \right\|_2^2 + \epsilon^2 \|c\|_2^2$$

$$\|Ac - b\|_2^2$$

where

• $\epsilon \propto \epsilon_{\mathrm{mach}}$ is due to finite-precision arithmetic

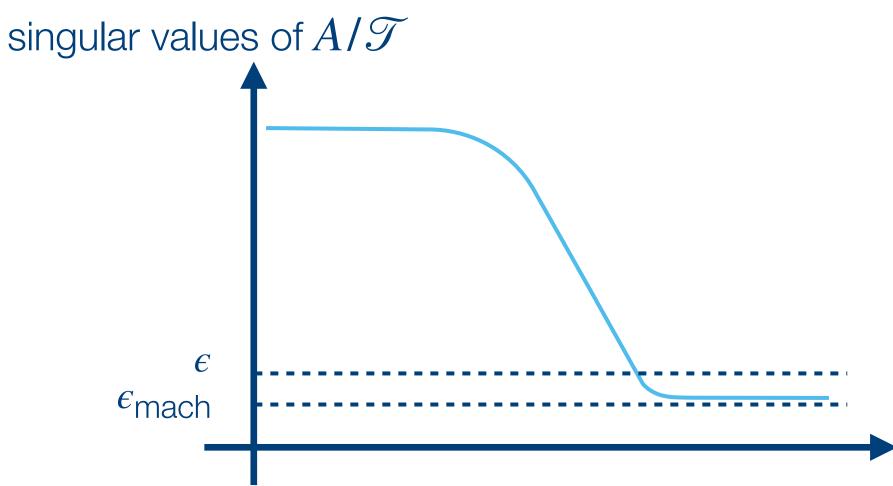


$$\widetilde{c}_d = \arg\min_{c \in \mathbb{C}^n} \left\| \mathcal{M}(\mathcal{T}c - f) \right\|_2^2 + \epsilon^2 \|c\|_2^2$$

$$\|Ac - b\|_2^2$$

where

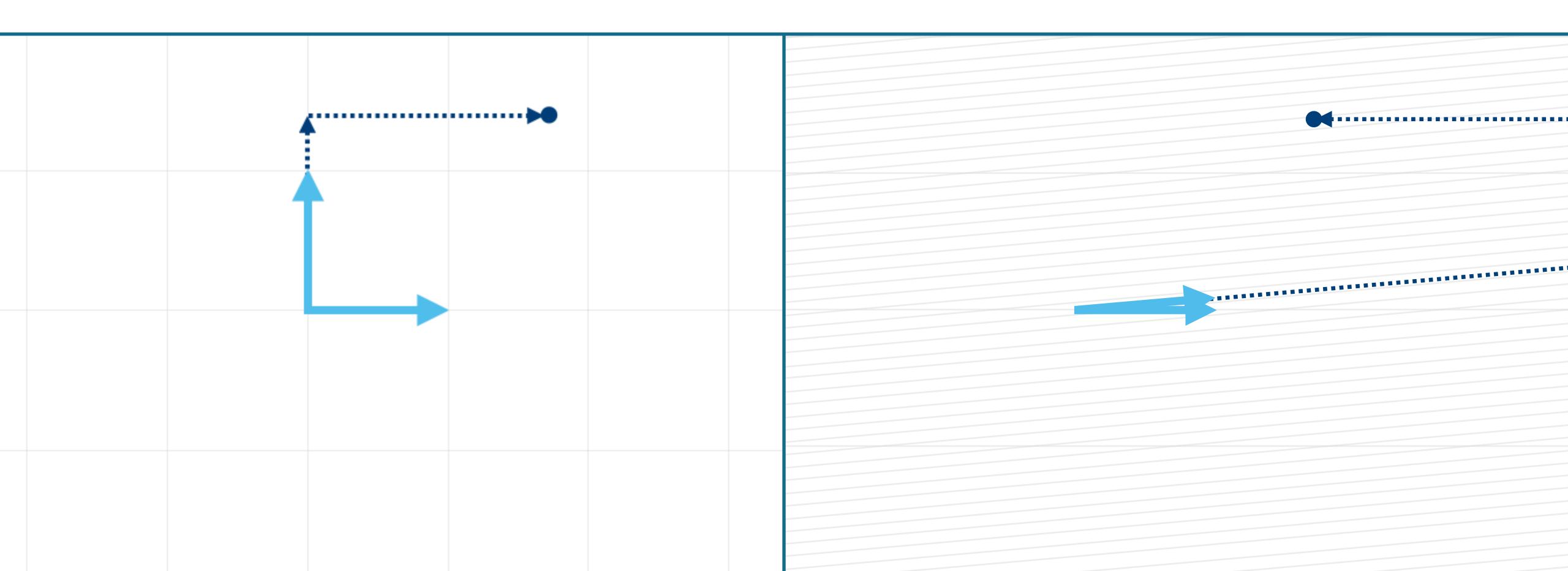
• $\epsilon \propto \epsilon_{\mathrm{mach}}$ is due to finite-precision arithmetic



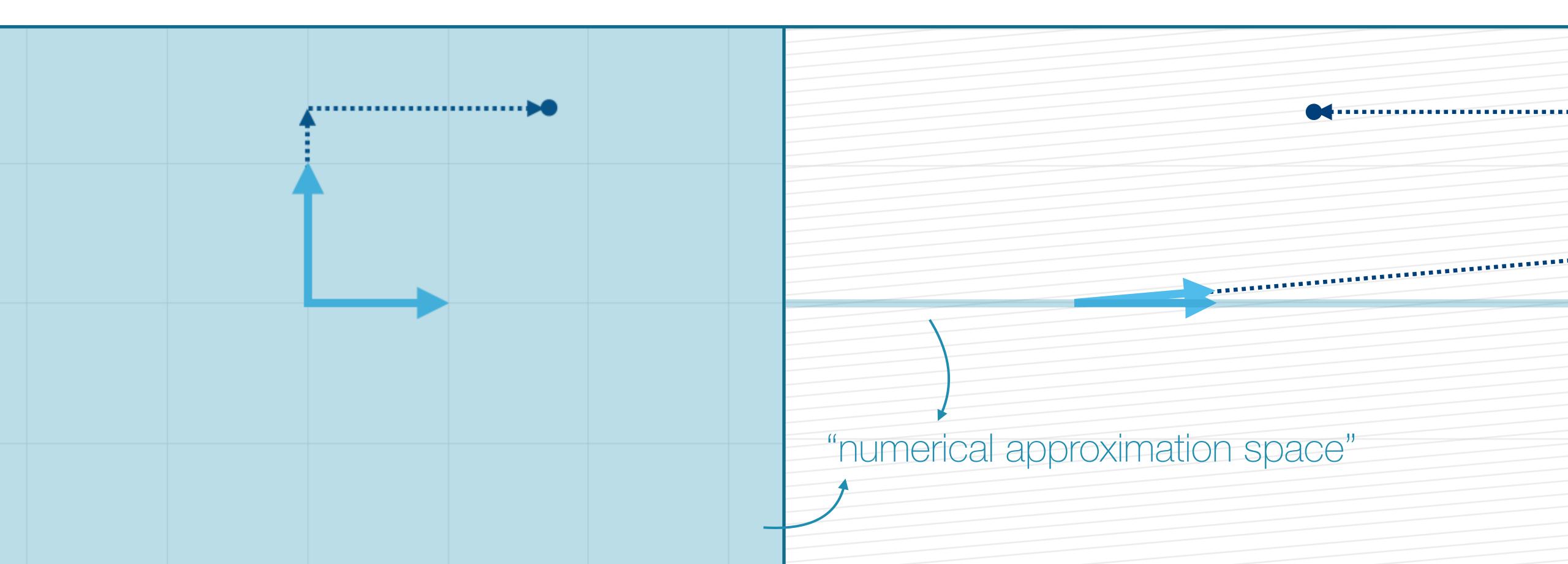
When
$$\|\mathcal{M}\cdot\|_2 \approx \|\cdot\|_{L^2(X)}$$
, we get

$$\left\| \left\| \mathcal{T} \widetilde{c}_d - f \right\|_{L^2(X)} \lesssim \min_{c \in \mathbb{C}^n} \left\| \left\| \mathcal{T} c - f \right\|_{L^2(X)} + \epsilon \|c\|_2$$

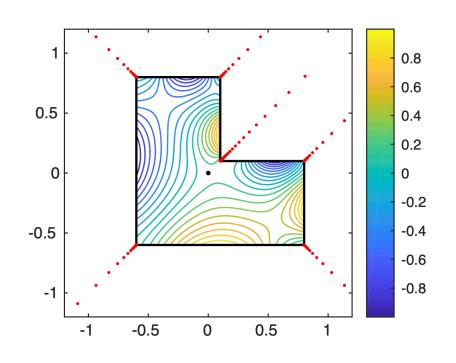
$$\left\| \left\| \widetilde{\mathcal{T}} \widetilde{c}_d - f \right\|_{L^2(X)} \lesssim \min_{c \in \mathbb{C}^n} \left\| \left\| \widetilde{\mathcal{T}} c - f \right\|_{L^2(X)} + \epsilon \|c\|_2$$

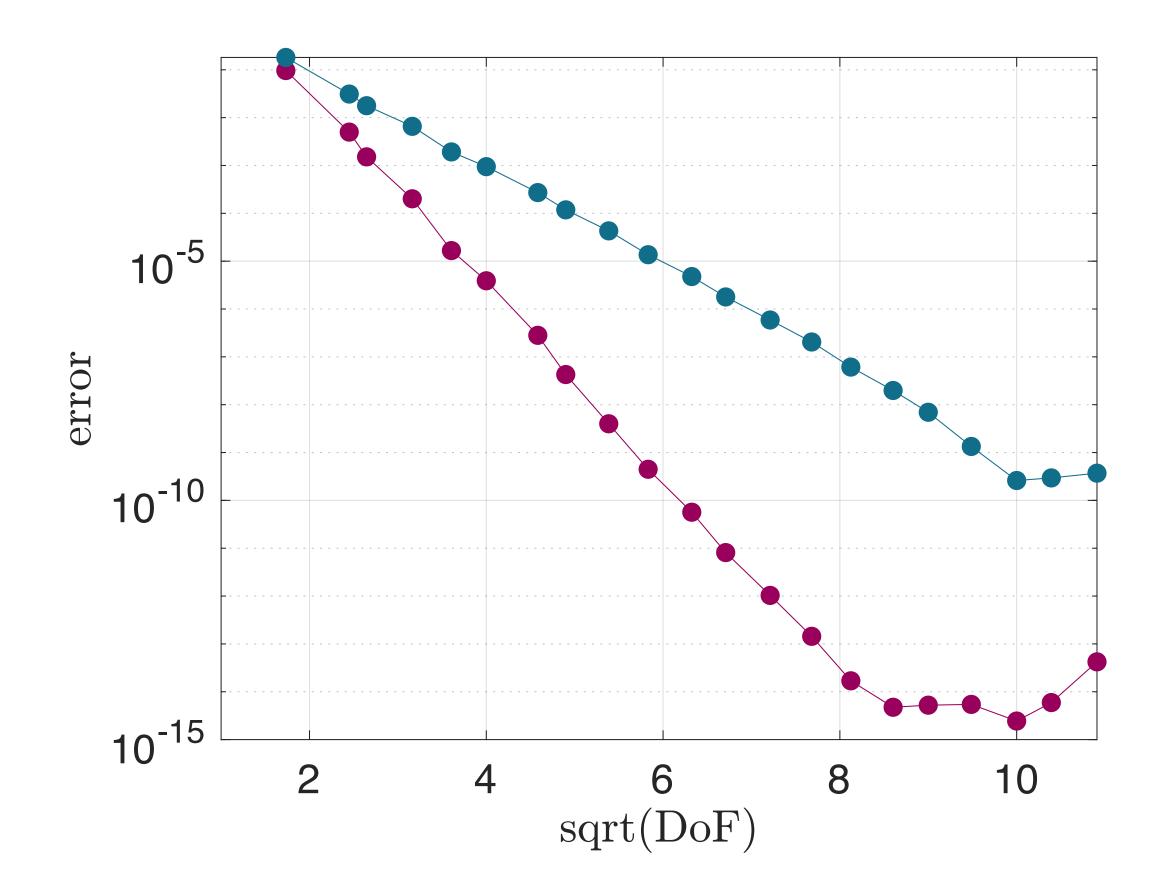


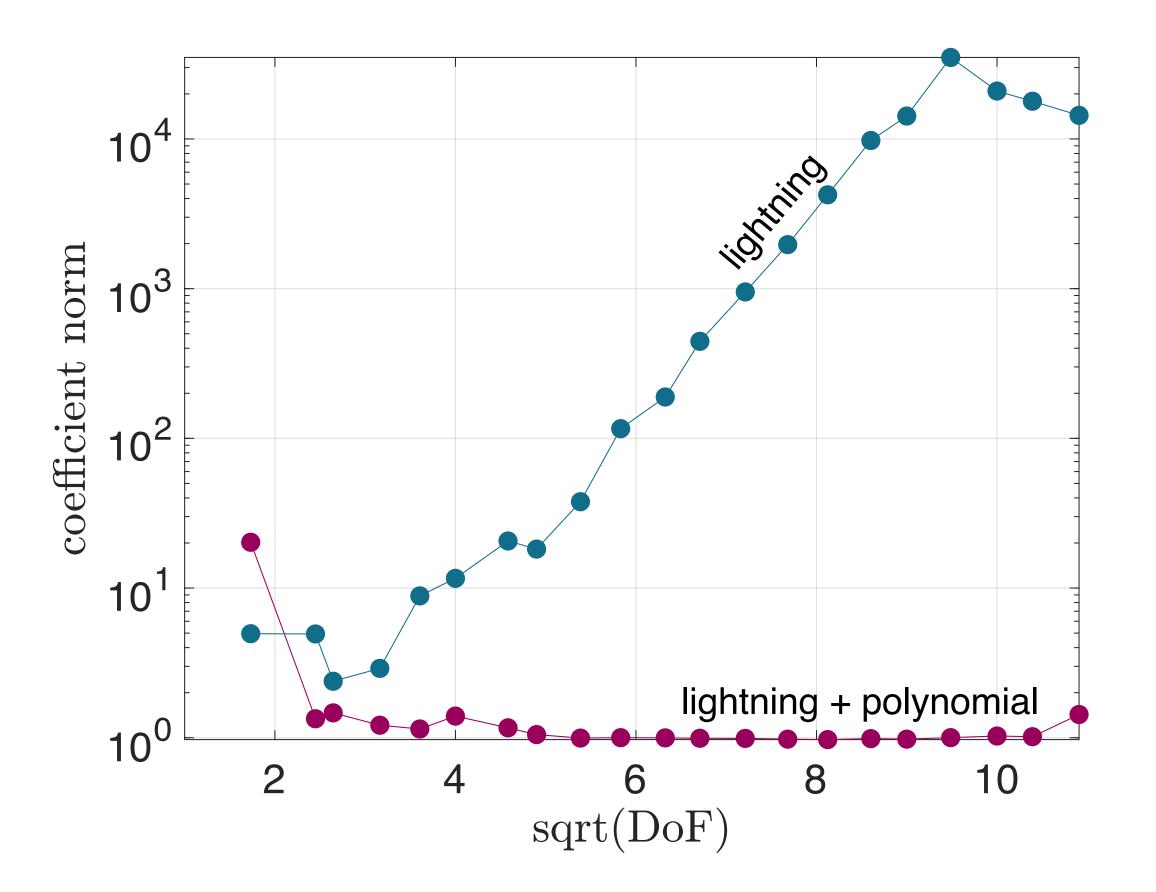
$$\left\| \left\| \mathcal{T} \widetilde{c}_d - f \right\|_{L^2(X)} \lesssim \min_{c \in \mathbb{C}^n} \left\| \left\| \mathcal{T} c - f \right\|_{L^2(X)} + \epsilon \|c\|_2 \right\|$$



$$\left\| \left\| \mathcal{T} \widetilde{c}_d - f \right\|_{L^2(X)} \lesssim \min_{c \in \mathbb{C}^n} \left\| \left\| \mathcal{T} c - f \right\|_{L^2(X)} + \epsilon \|c\|_2$$







- Approximation theory in finite precision
- An intuitive randomised sampling strategy
- Efficient sampling for non-orthogonal bases

We want

$$\|\mathcal{M}v\|_2^2 = \sum_{i=1}^m w_i |v(x_i)|^2 \qquad \approx \qquad \|v\|_{L^2(X)}^2 = \int_X v^2 dx, \qquad \forall v \in V = \operatorname{span}(\{\phi_i\}_{i=1}^n)$$

using as few sample points $m \ge n$ as possible.

We want

$$\|\mathcal{M}v\|_2^2 = \sum_{i=1}^m w_i |v(x_i)|^2 \qquad \approx \qquad \|v\|_{L^2(X)}^2 = \int_X v^2 dx, \qquad \forall v \in V = \mathrm{span}(\{\phi_i\}_{i=1}^n)$$

using as few sample points $m \ge n$ as possible.

What is a good choice for the sample points? I.e., which points are more important than others? We want

$$\|\mathcal{M}v\|_2^2 = \sum_{i=1}^m w_i |v(x_i)|^2 \qquad \approx \qquad \|v\|_{L^2(X)}^2 = \int_X v^2 dx, \qquad \forall v \in V = \mathrm{span}(\{\phi_i\}_{i=1}^n)$$

using as few sample points $m \ge n$ as possible.

What is a good choice for the sample points? I.e., which points are more important than others?

 \rightarrow Every $v \in V$ should be visible on the grid, also functions that spike locally.

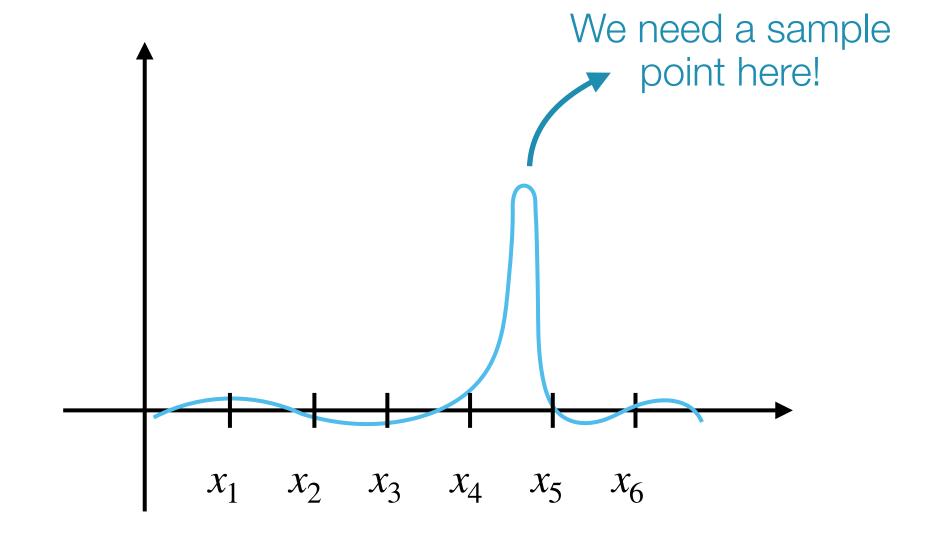
How much can a function spike around x?

We want

$$\|\mathcal{M}v\|_2^2 = \sum_{i=1}^m w_i |v(x_i)|^2 \qquad \approx \qquad \|v\|_{L^2(X)}^2 = \int_X v^2 dx, \qquad \forall v \in V = \operatorname{span}(\{\phi_i\}_{i=1}^n)$$

using as few sample points $m \ge n$ as possible.

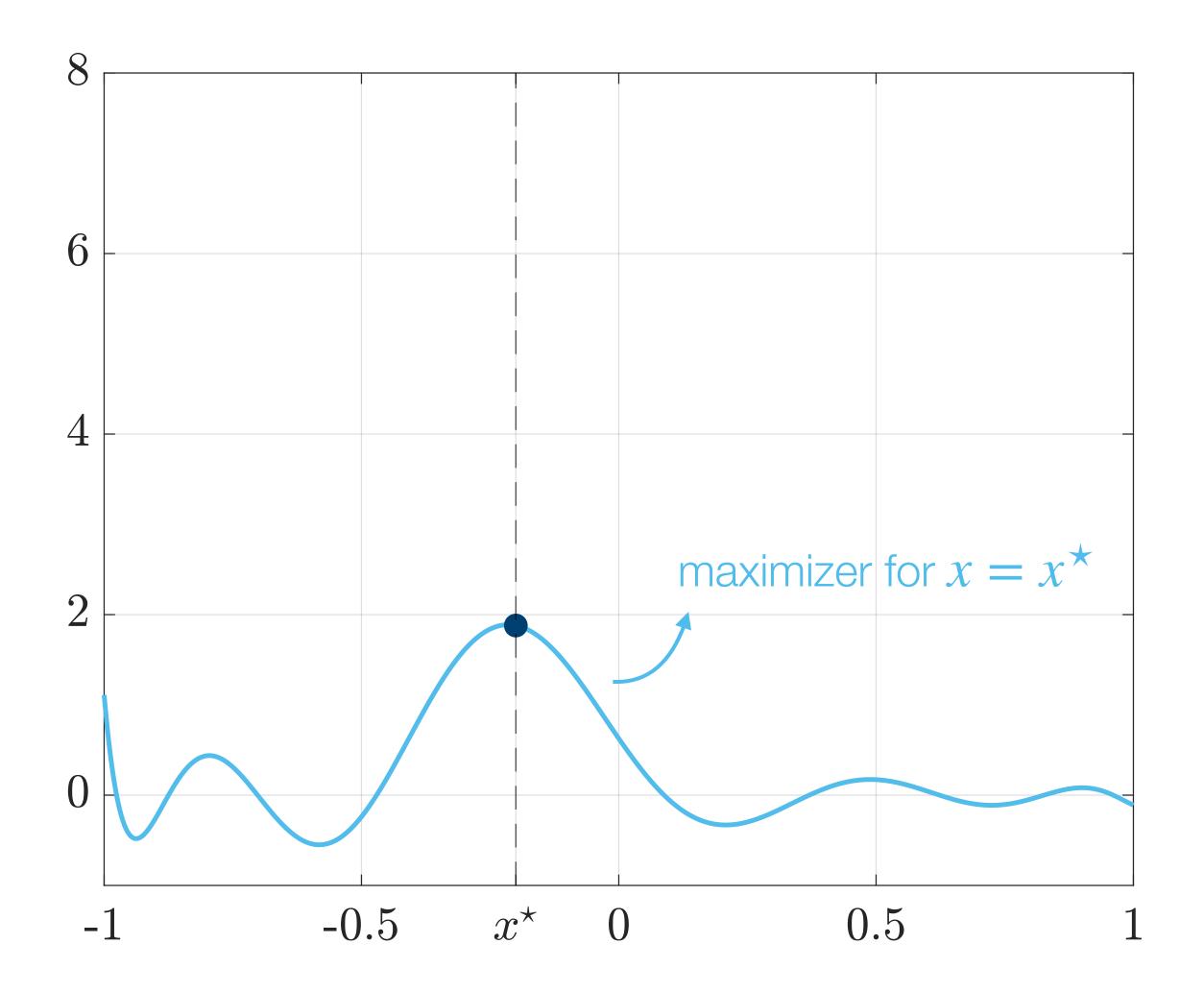
What is a good choice for the sample points? I.e., which points are more important than others?



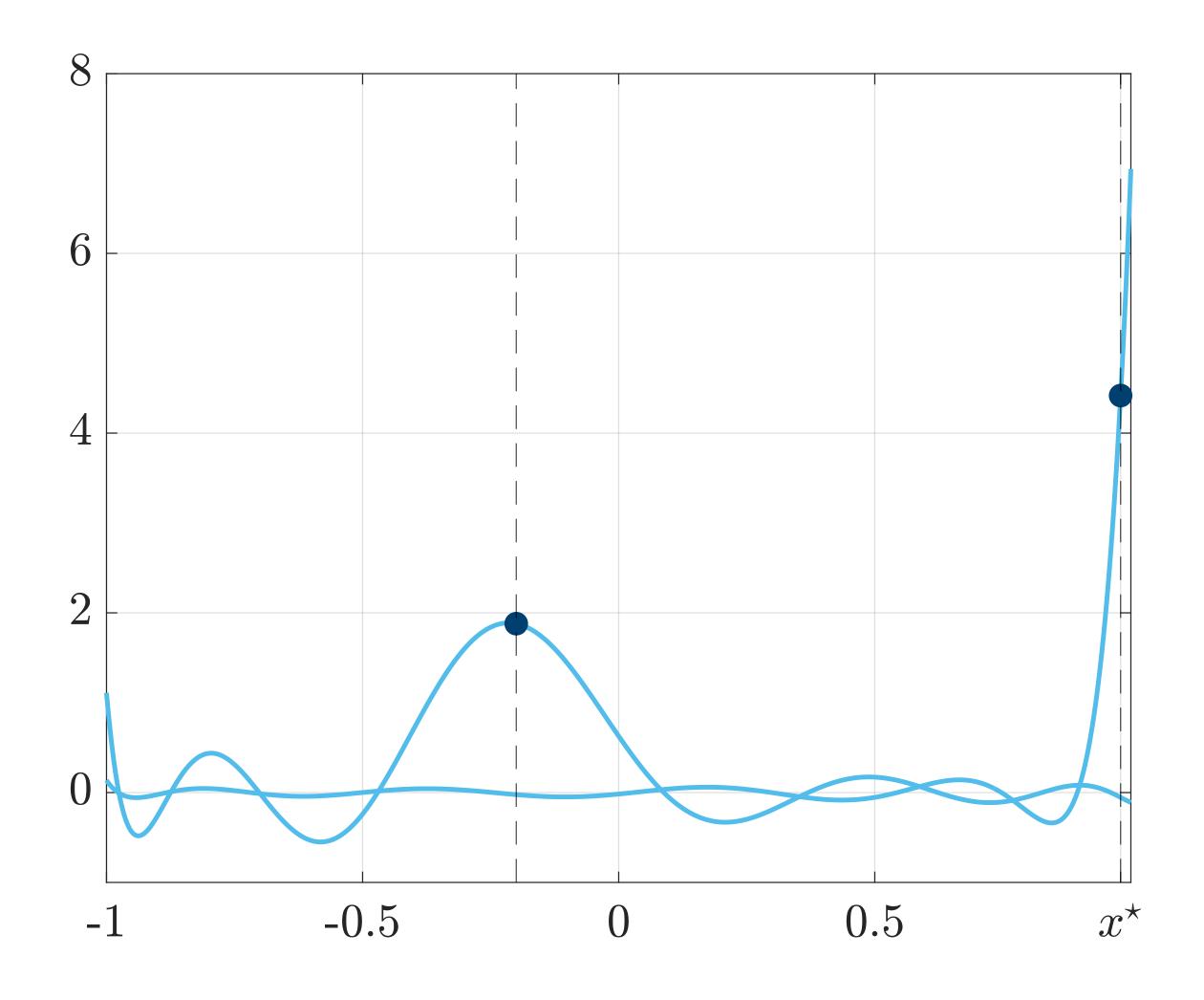
 \rightarrow Every $v \in V$ should be visible on the grid, also functions that spike locally.

How much can a function spike around x?

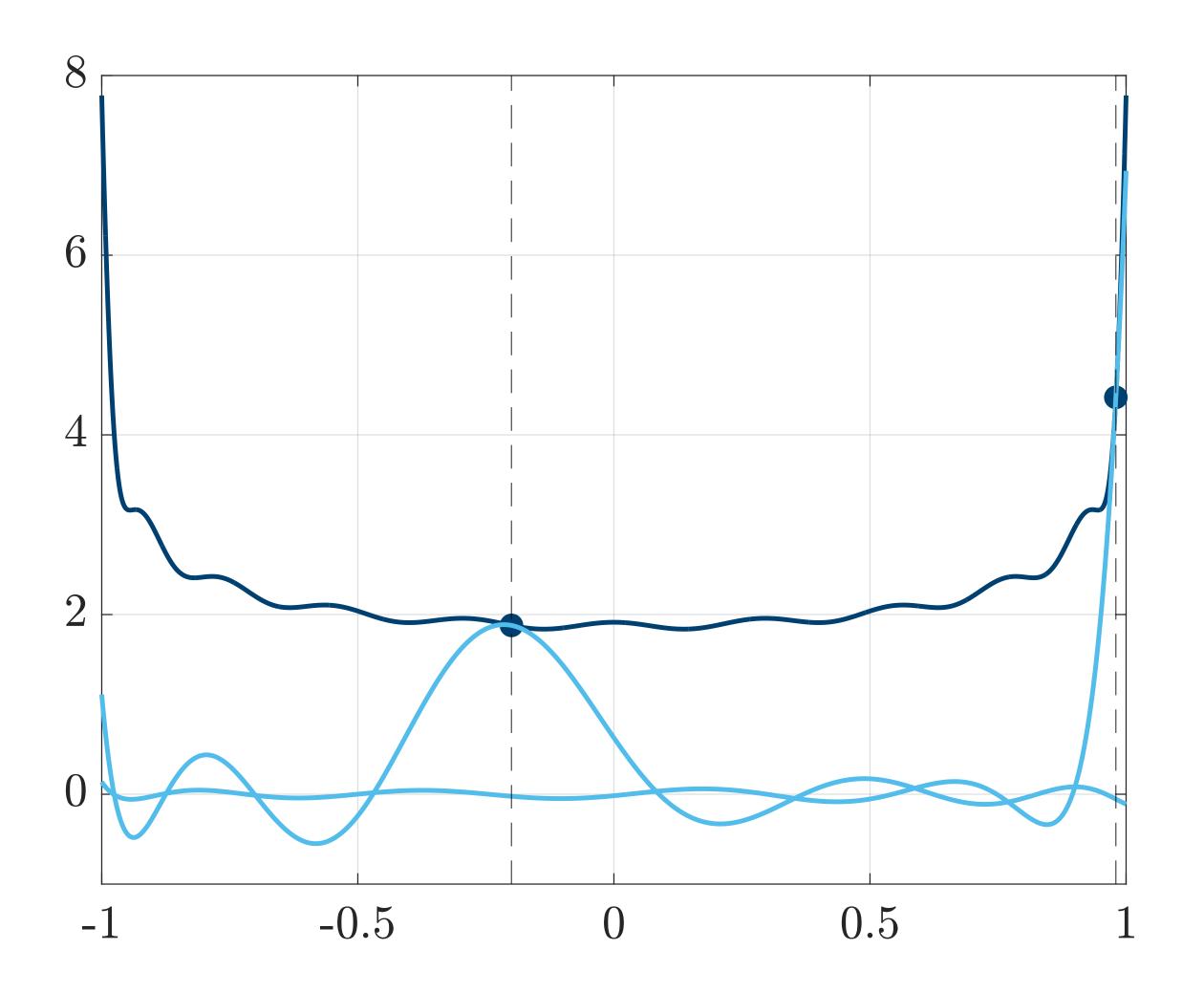
$$\max_{v \in V, \|v\|_{L^2(X)} = 1} |v(x)|$$



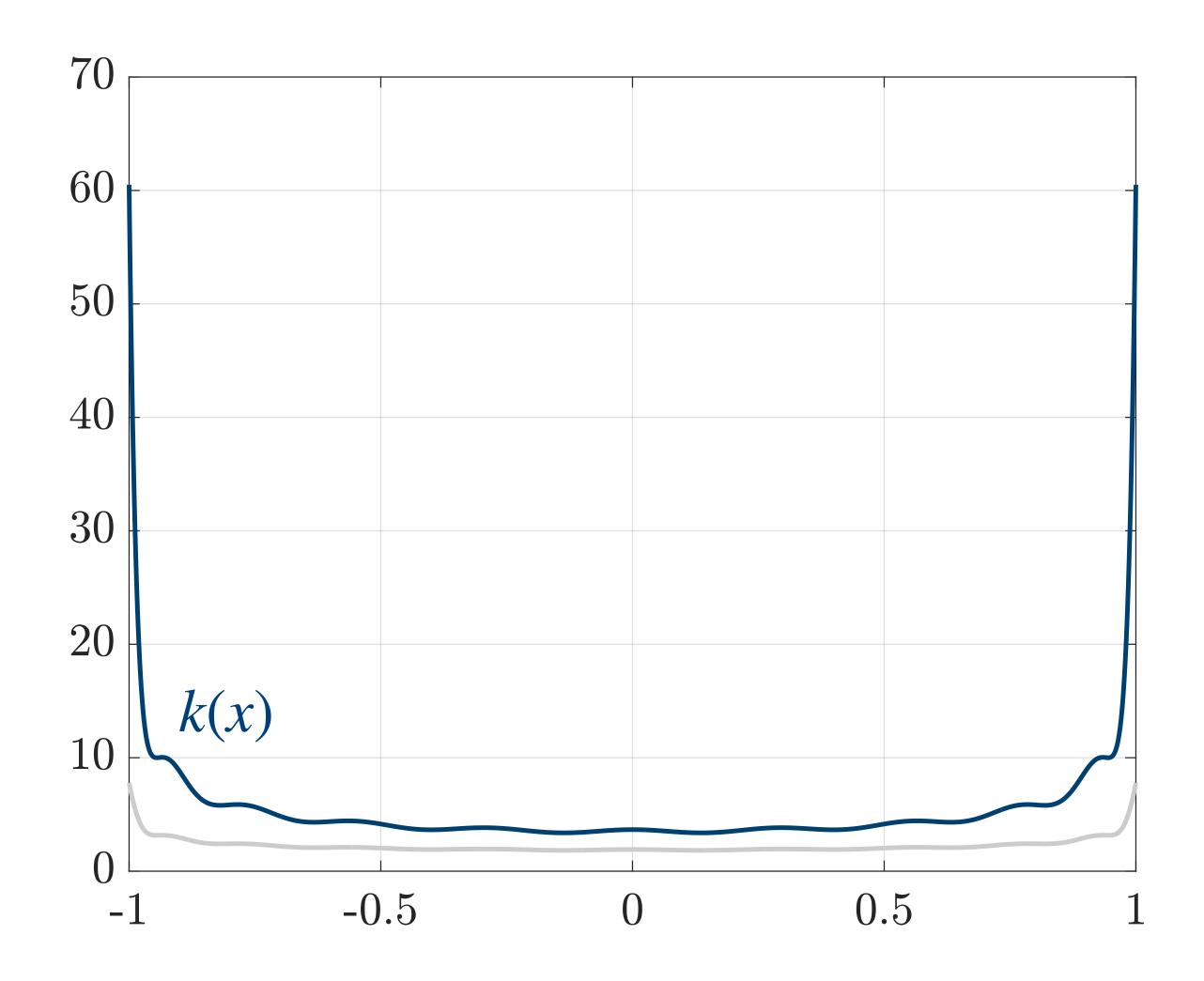
$$\max_{v \in V, \|v\|_{L^2(X)} = 1} |v(x)|$$



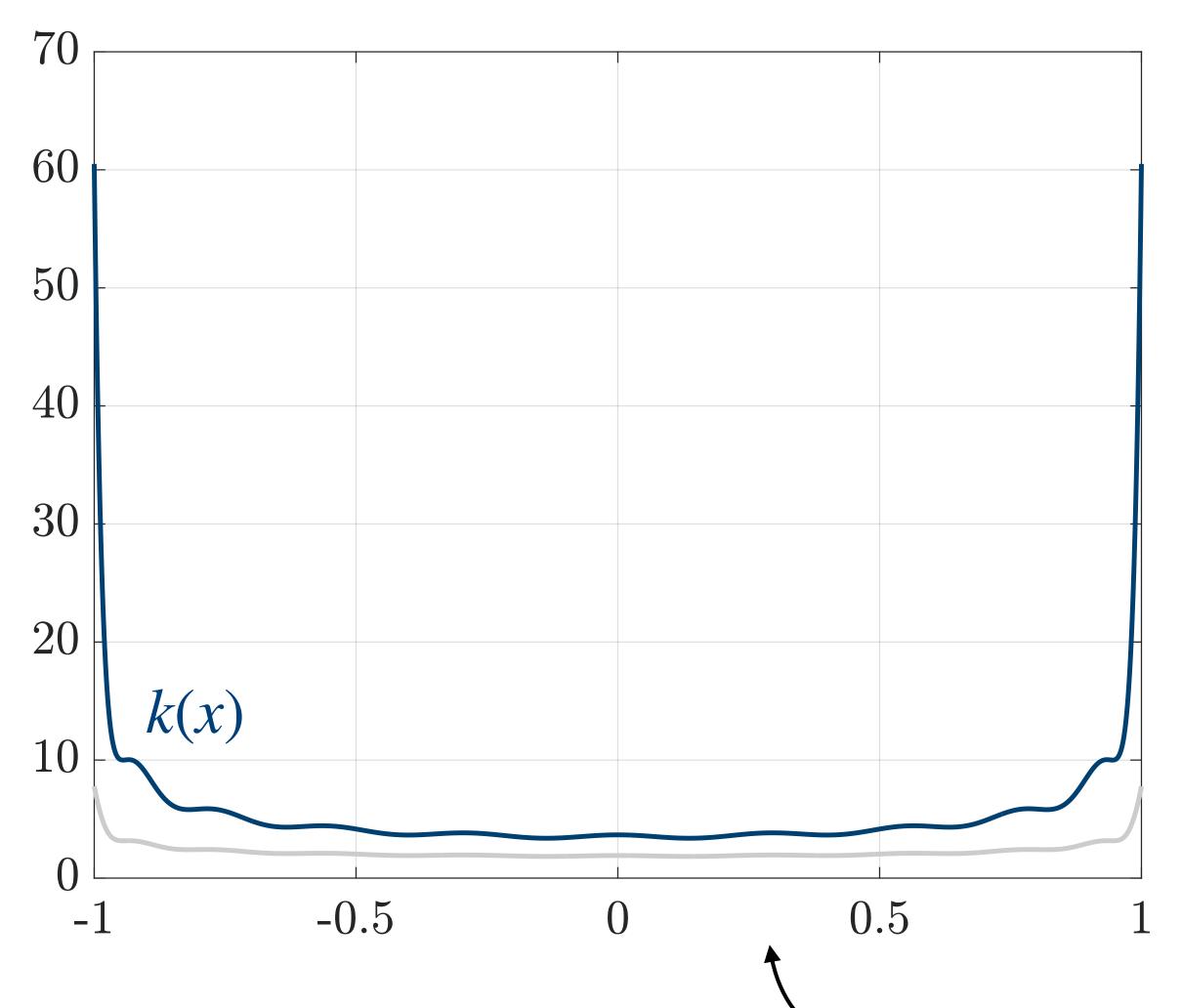
$$\max_{v \in V, \|v\|_{L^2(X)} = 1} |v(x)|$$



$$\max_{v \in V, \|v\|_{L^2(X)} = 1} |v(x)|$$



$$k(x) = \max_{v \in V, ||v||_{L^2(X)} = 1} |v(x)|^2$$



$$k(x) = \max_{v \in V, ||v||_{L^2(X)} = 1} |v(x)|^2$$

→ let's look at polynomials up to degree 10

With increasing polynomial degree, k(x) converges to the arcsine measure (after normalization)

The function

$$k(x) = \max_{v \in V, ||v||_{L^2(X)} = 1} |v(x)|^2$$

The function

$$k(x) = \max_{v \in V, ||v||_{L^2(X)} = 1} |v(x)|^2$$

•
$$\int_X k(x)dx = n$$
 where $n = \dim(V)$

The function

$$k(x) = \max_{v \in V, ||v||_{L^2(X)} = 1} |v(x)|^2$$

- $\int_X k(x)dx = n$ where $n = \dim(V)$
- $k(x) = \sum_{i=1}^{n} |u_i(x)|^2$ where $\{u_i\}_{i=1}^{n}$ is an orthonormal basis for V

The function

$$k(x) = \max_{v \in V, ||v||_{L^2(X)} = 1} |v(x)|^2$$

- $\int_X k(x)dx = n$ where $n = \dim(V)$
- $k(x) = \sum_{i=1}^{n} |u_i(x)|^2$ where $\{u_i\}_{i=1}^{n}$ is an orthonormal basis for V
- $k(x) = \Phi(x) * G^{-1} \Phi(x)$ where $\operatorname{span}(\{\phi_i\}_{i=1}^n) = V$, $\Phi(x) = \begin{bmatrix} \phi_1(x) & \dots & \phi_n(x) \end{bmatrix}^\mathsf{T}$ and G is the Gram matrix

The function

$$k(x) = \max_{v \in V, ||v||_{L^2(X)} = 1} |v(x)|^2$$

- $\int_{V} k(x)dx = n$ where $n = \dim(V)$
- $k(x) = \sum_{i=1}^{n} |u_i(x)|^2$ where $\{u_i\}_{i=1}^n$ is an orthonormal basis for V
- $(G)_{i,j} = \langle \phi_i, \phi_j \rangle_{L^2(X)}$ $\bullet \ k(x) = \Phi(x) * G^{-1} \Phi(x)$ where $\operatorname{span}(\{\phi_i\}_{i=1}^n)=V$, $\Phi(x)=\begin{bmatrix}\phi_1(x)&\dots&\phi_n(x)\end{bmatrix}^{\mathsf{T}}$ and G is the Gram matrix

Christoffel sampling

(Cohen and Migliorati, 2017)

If one draws $m = \mathcal{O}(n \log(n))$ samples according to

$$d\mu = w \, dx$$
 with $w(x) = k(x)/n$

then, with high probability,

$$\left\| \left\| \mathcal{T} c_d - f \right\|_{L^2(X)} \lesssim \min_{c \in \mathbb{C}^n} \left\| \left\| \mathcal{T} c - f \right\|_{L^{\infty}(X)}$$

for the weighted discrete least squares approximation

$$c_d = \arg\min_{c \in \mathbb{C}^n} \left\| \mathcal{M}(\mathcal{T}c - f) \right\|_2^2$$

Christoffel sampling

(Cohen and Migliorati, 2017)

If one draws $m = \mathcal{O}(n \log(n))$ samples according to

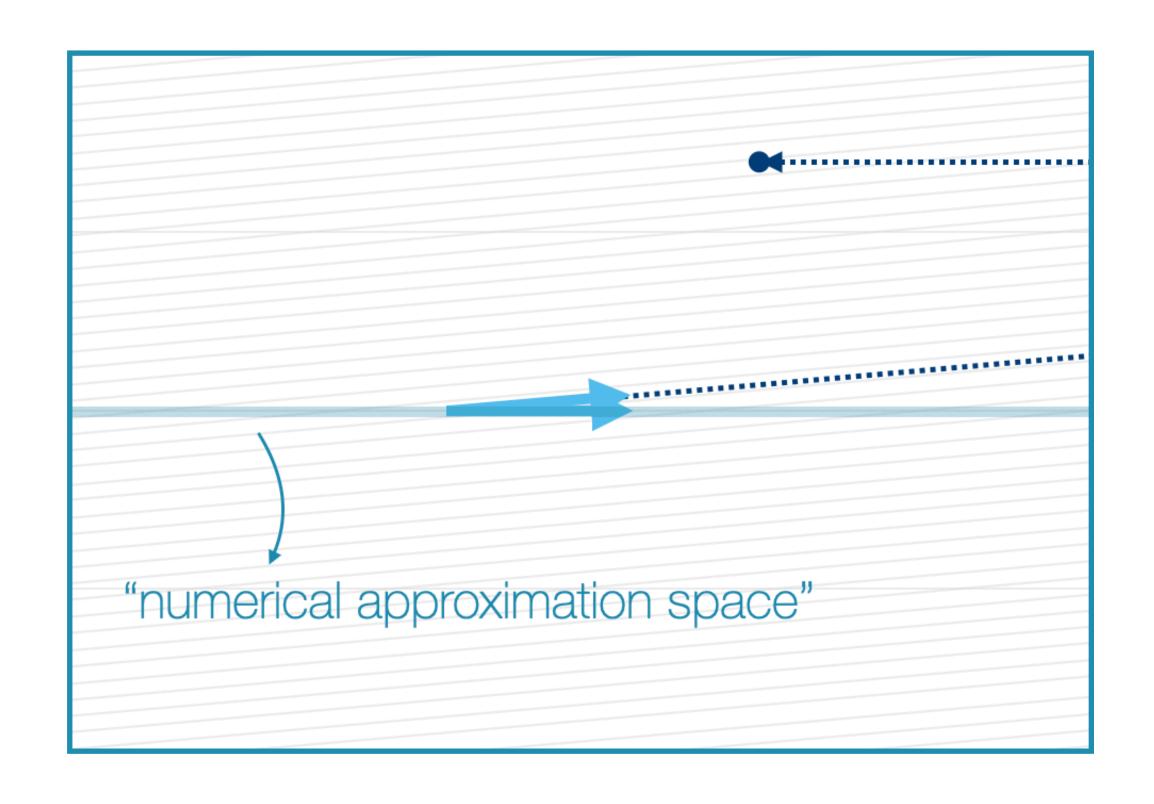
$$d\mu = w \, dx$$
 with $w(x) = k(x)/n$

then, with high probability,

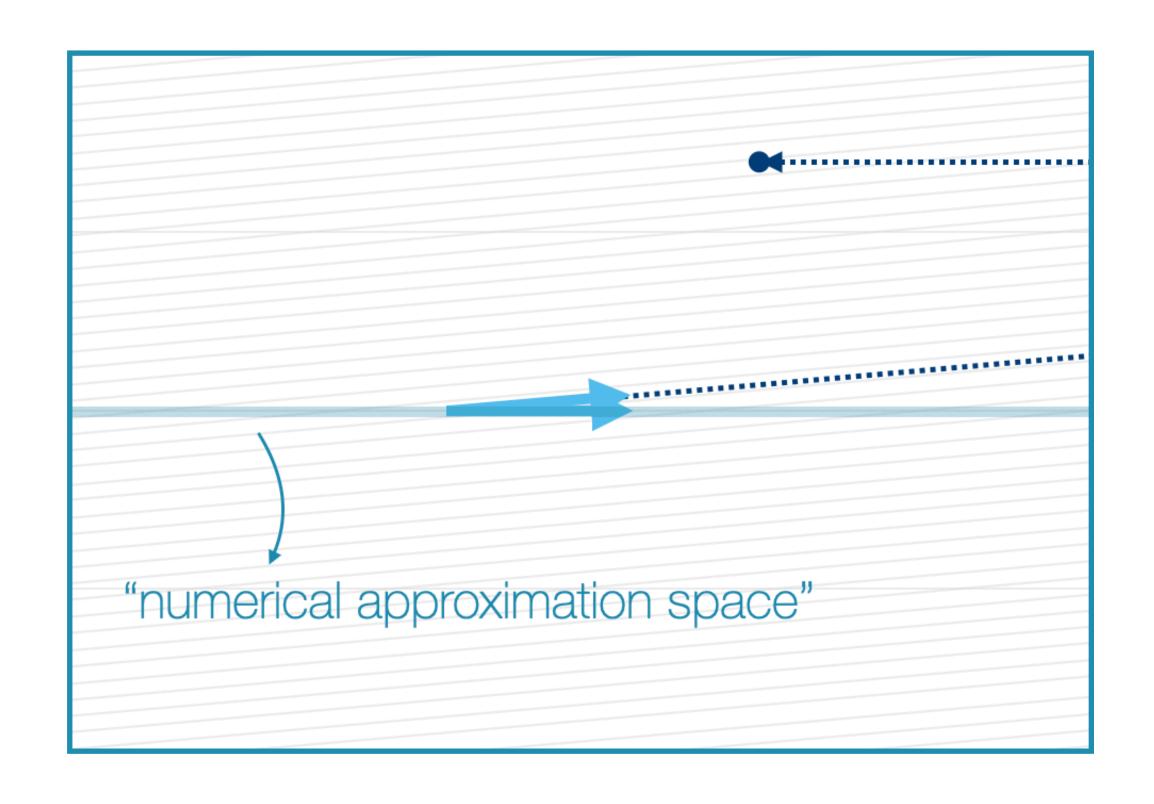
$$\left\| \left\| \mathcal{T} c_d - f \right\|_{L^2(X)} \lesssim \min_{c \in \mathbb{C}^n} \left\| \left\| \mathcal{T} c - f \right\|_{L^{\infty}(X)}$$

for the weighted discrete least squares approximation

$$c_d = \arg\min_{c \in \mathbb{C}^n} \left\| \mathcal{M}(\mathcal{T}c - f) \right\|_2^2$$

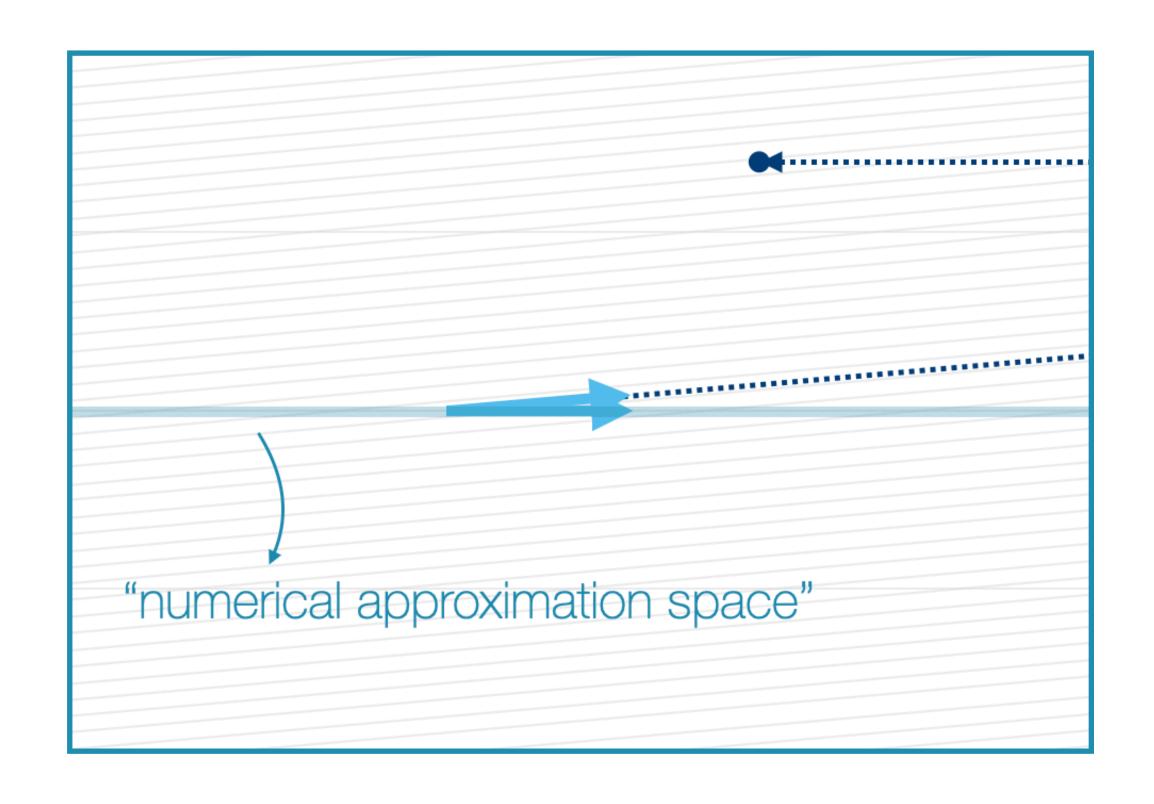


$$\left\| \left\| \mathcal{T} \widetilde{c}_d - f \right\|_{L^2(X)} \lesssim \min_{c \in \mathbb{C}^n} \left\| \left\| \mathcal{T} c - f \right\|_{L^2(X)} + \epsilon \|c\|_2 \right\|$$



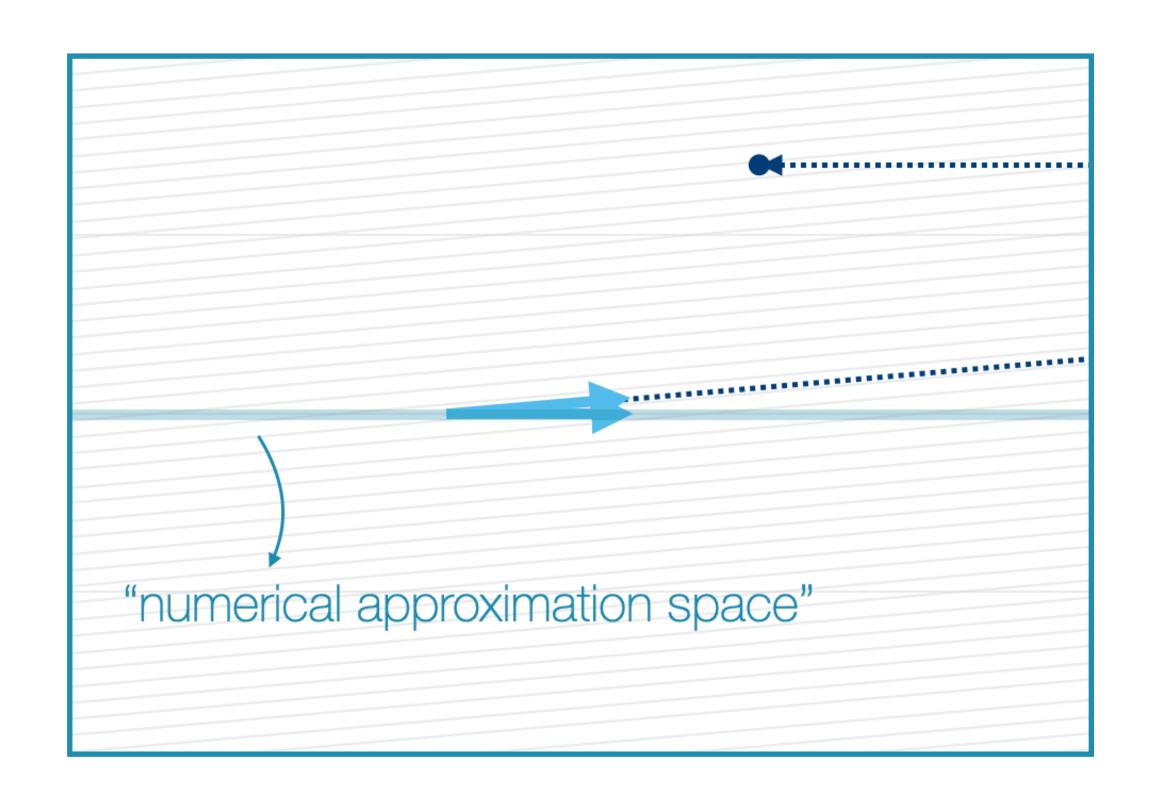
$$\left\| \left\| \mathcal{T} \widetilde{c}_d - f \right\|_{L^2(X)} \lesssim \min_{c \in \mathbb{C}^n} \left\| \left\| \mathcal{T} c - f \right\|_{L^2(X)} + \epsilon \|c\|_2$$

$$k(x) = \max_{v \in V, ||v||_{L^2(X)} = 1} |v(x)|^2$$



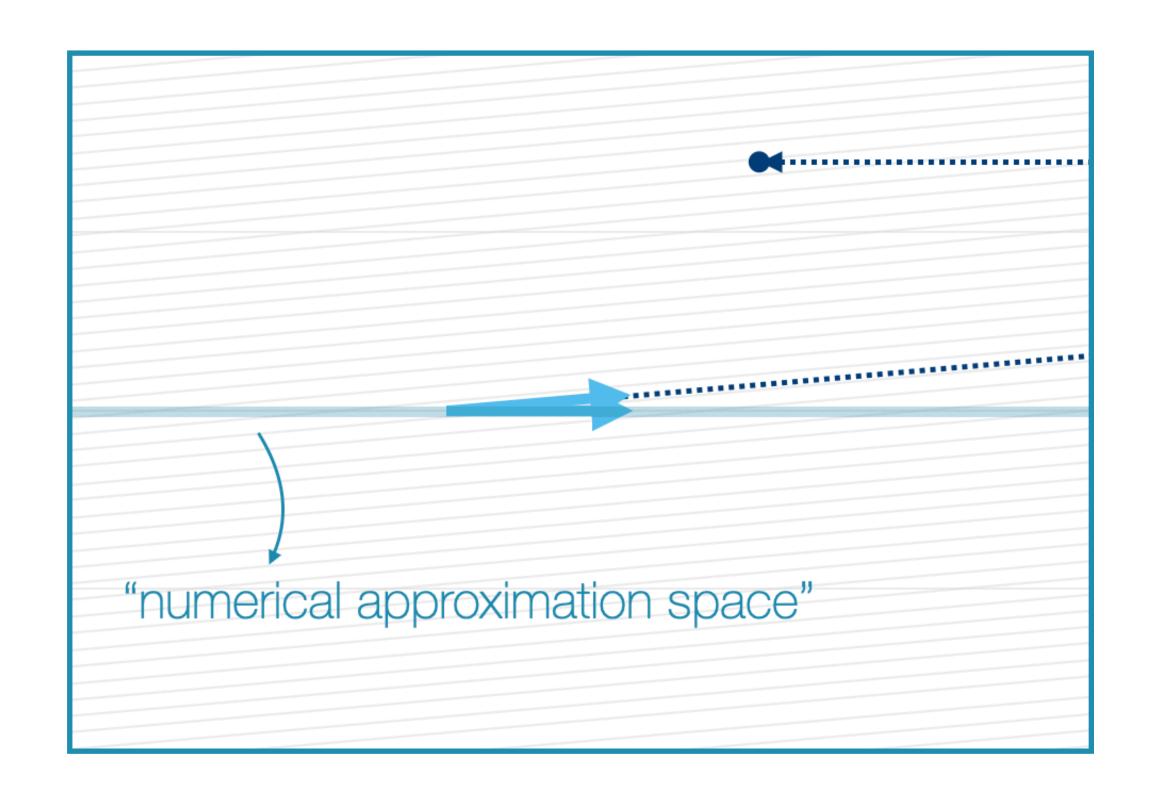
$$\left\| \left\| \mathcal{T} \widetilde{c}_d - f \right\|_{L^2(X)} \lesssim \min_{c \in \mathbb{C}^n} \left\| \left\| \mathcal{T} c - f \right\|_{L^2(X)} + \epsilon \|c\|_2$$

$$k(x) = \max_{v \in V, v \neq 0} \frac{|v(x)|^2}{\|v\|_{L^2}^2}$$



$$\left\| \left\| \mathcal{T} \widetilde{c}_d - f \right\|_{L^2(X)} \lesssim \min_{c \in \mathbb{C}^n} \left\| \left\| \mathcal{T} c - f \right\|_{L^2(X)} + \epsilon \|c\|_2 \right\|$$

$$k(x) = \max_{c \in \mathbb{C}^n, \mathcal{T}c \neq 0} \frac{|\mathcal{T}c(x)|^2}{||\mathcal{T}c||_{L^2}^2}$$



$$\left\| \left\| \mathcal{T} \widetilde{c}_d - f \right\|_{L^2(X)} \lesssim \min_{c \in \mathbb{C}^n} \left\| \left\| \mathcal{T} c - f \right\|_{L^2(X)} + \epsilon \|c\|_2 \right\|$$

$$k(x) = \max_{c \in \mathbb{C}^n, \mathcal{T}c \neq 0} \frac{|\mathcal{T}c(x)|^2}{||\mathcal{T}c||_{L^2}^2} \longrightarrow k^{\epsilon}(x) = \max_{c \in \mathbb{C}^n, \mathcal{T}c \neq 0} \frac{|\mathcal{T}c(x)|^2}{||\mathcal{T}c||_{L^2}^2 + \epsilon^2 ||c||_2^2}$$

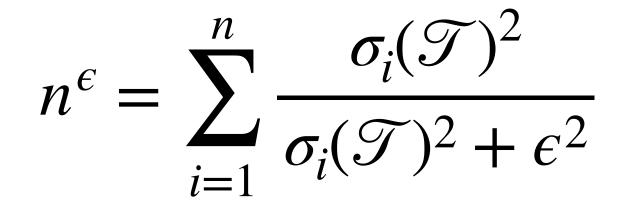
$$k^{\epsilon}(x) = \max_{c \in \mathbb{C}^{n}, \mathcal{T}c \neq 0} \frac{|\mathcal{T}c(x)|^{2}}{||\mathcal{T}c||_{L^{2}}^{2} + |\epsilon^{2}||c||_{2}^{2}} = \Phi(x)^{*} (G + |\epsilon^{2}I|)^{-1} \Phi(x)$$

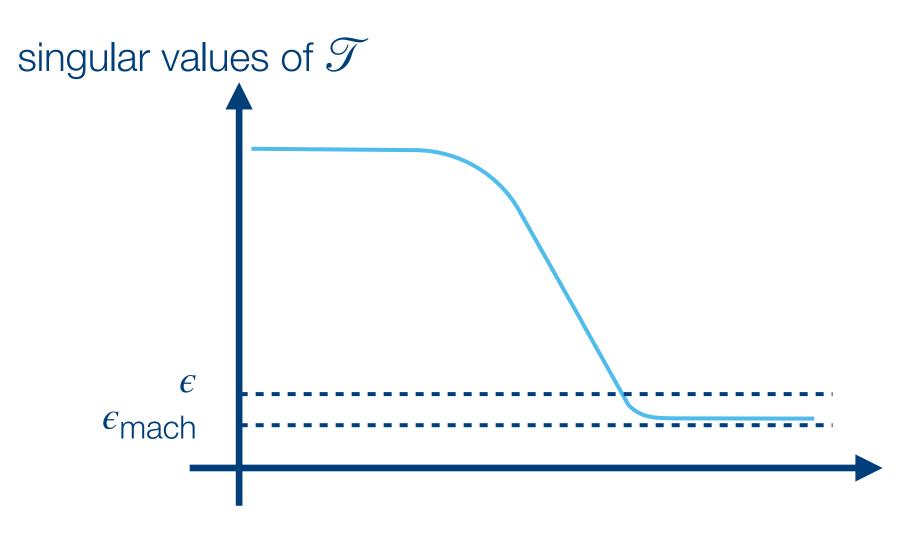
$$k^{\epsilon}(x) = \max_{c \in \mathbb{C}^n, \mathcal{T}c \neq 0} \frac{|\mathcal{T}c(x)|^2}{\|\mathcal{T}c\|_{L^2}^2 + \epsilon^2 \|c\|_2^2} = \Phi(x)^* (G + \epsilon^2 I)^{-1} \Phi(x)$$

computable in finite precision for non-orthogonal bases

$$k^{\epsilon}(x) = \max_{c \in \mathbb{C}^n, \mathcal{T}c \neq 0} \frac{|\mathcal{T}c(x)|^2}{||\mathcal{T}c||_{L^2}^2 + |\epsilon^2||c||_2^2} = \Phi(x)^* (G + |\epsilon^2 I|)^{-1} \Phi(x)$$

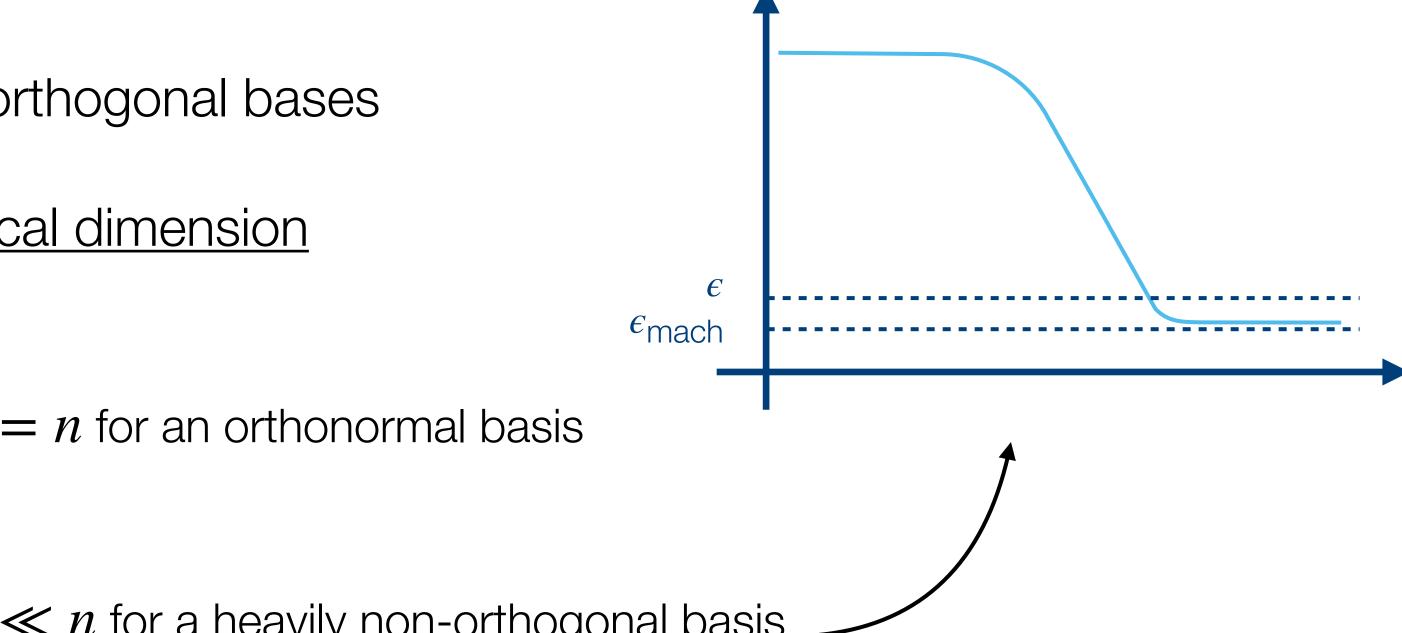
- computable in finite precision for non-orthogonal bases
- $\int_X k^{\epsilon} dx = n^{\epsilon}$ where n^{ϵ} is the <u>numerical dimension</u>



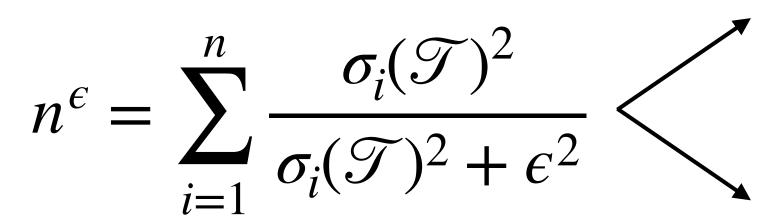


$$k^{\epsilon}(x) = \max_{c \in \mathbb{C}^n, \mathcal{T}c \neq 0} \frac{\left| \mathcal{T}c(x) \right|^2}{\| \mathcal{T}c \|_{L^2}^2 + \left| \epsilon^2 \| c \|_2^2} = \Phi(x)^* \left(G + \left| \epsilon^2 I \right| \right)^{-1} \Phi(x)$$

- computable in finite precision for non-orthogonal bases
- $\int_{\mathbf{v}} k^{\epsilon} dx = n^{\epsilon}$ where n^{ϵ} is the <u>numerical dimension</u>



singular values of ${\mathscr T}$



 $\ll n$ for a heavily non-orthogonal basis \longrightarrow

Numerical Christoffel sampling

(H. and Huybrechs, 2025)

If one draws $m = \mathcal{O}(n^{\epsilon} \log(n^{\epsilon}))$ samples according to

$$d\mu = w \, dx$$
 with $w(x) = k^{\epsilon}(x)/n^{\epsilon}$

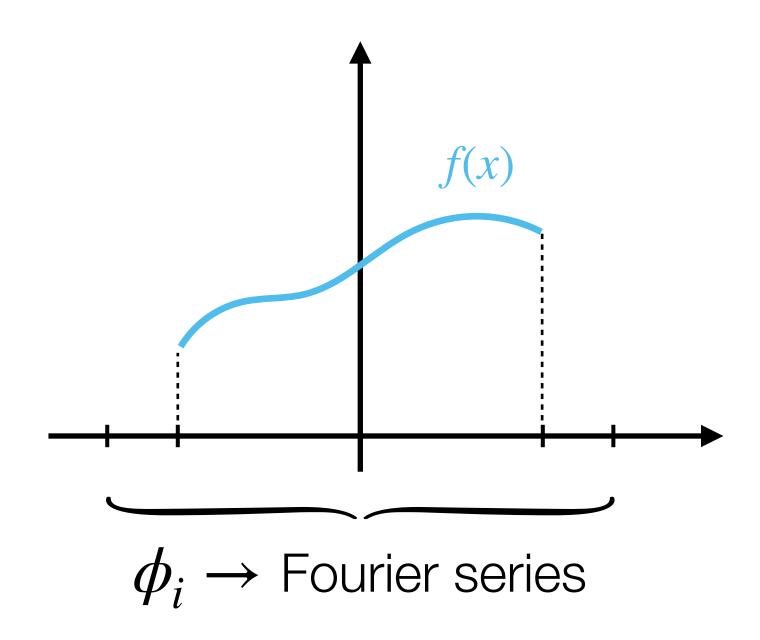
then, with high probability,

$$\left\| \left\| \mathcal{T} \widetilde{c}_d - f \right\|_{L^2(X)} \lesssim \min_{c \in \mathbb{C}^n} \left\| \left\| \mathcal{T} c - f \right\|_{L^{\infty}(X)} + \epsilon \|c\|_2 \right\|$$

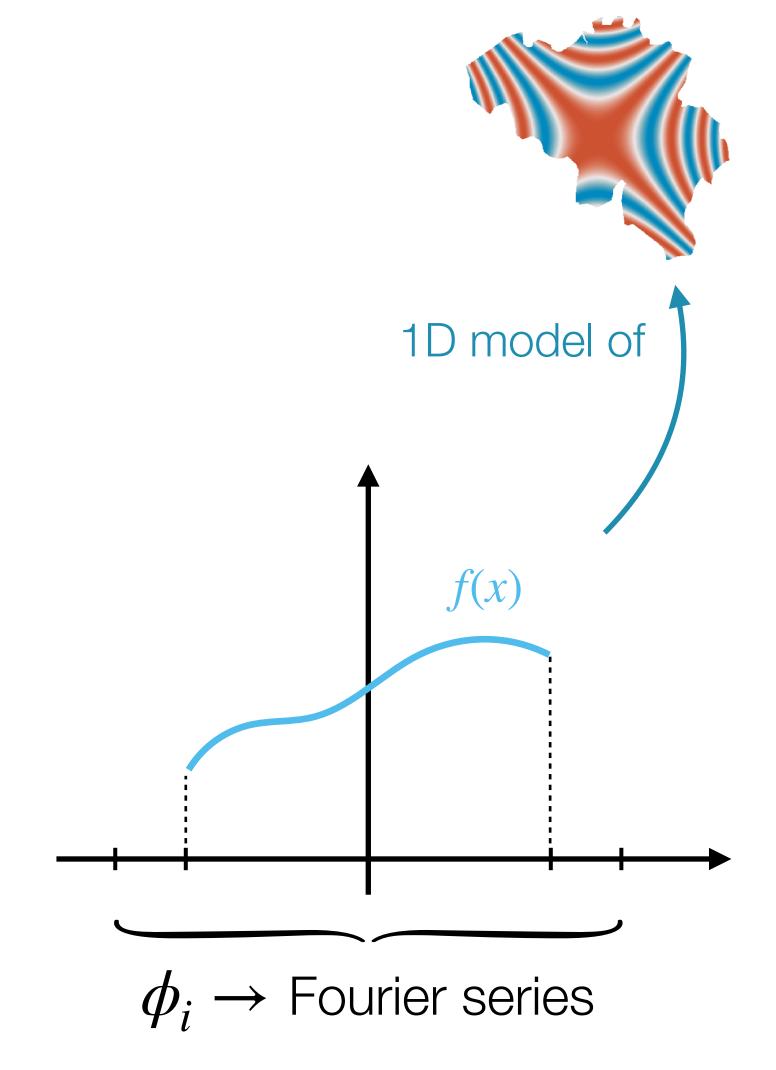
for the regularized weighted discrete least squares approximation

$$\widetilde{c}_d = \arg\min_{c \in \mathbb{C}^n} \left\| \mathcal{M}(\mathcal{T}c - f) \right\|_2^2 + \epsilon^2 \|c\|_2^2$$

- = Fourier series restricted to a smaller domain
- = non-orthogonal basis

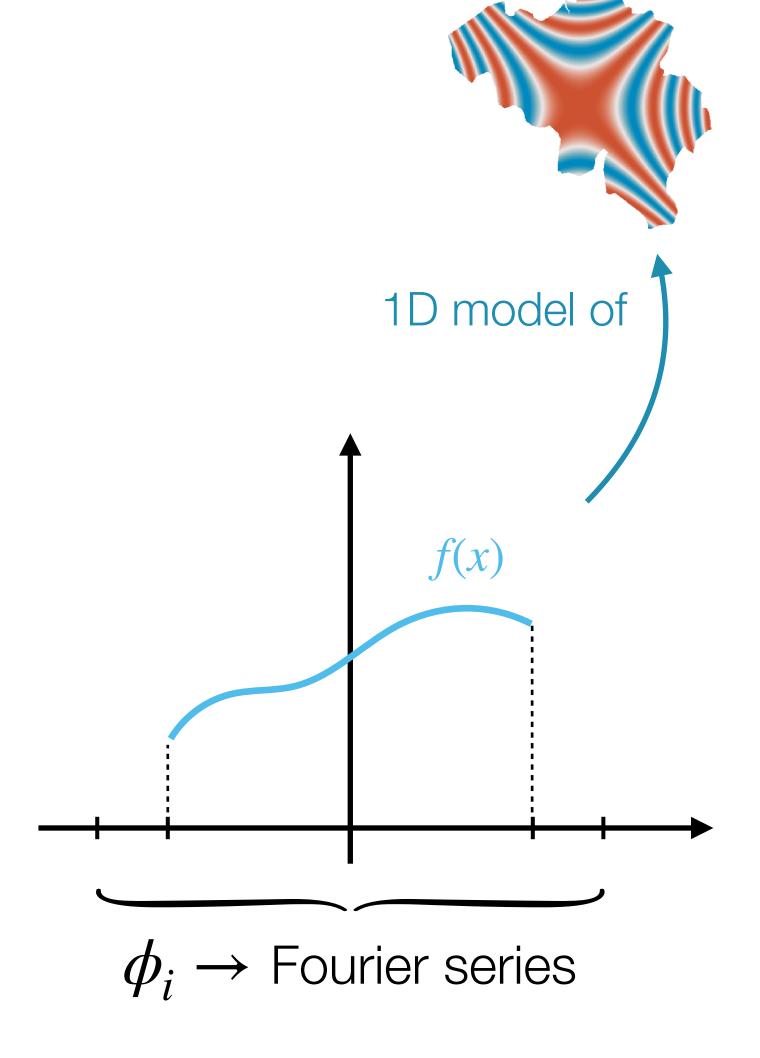


- = Fourier series restricted to a smaller domain
- = non-orthogonal basis



- = Fourier series restricted to a smaller domain
- = non-orthogonal basis

k(x) grows much larger near the boundaries than the middle \rightarrow we need to cluster points there

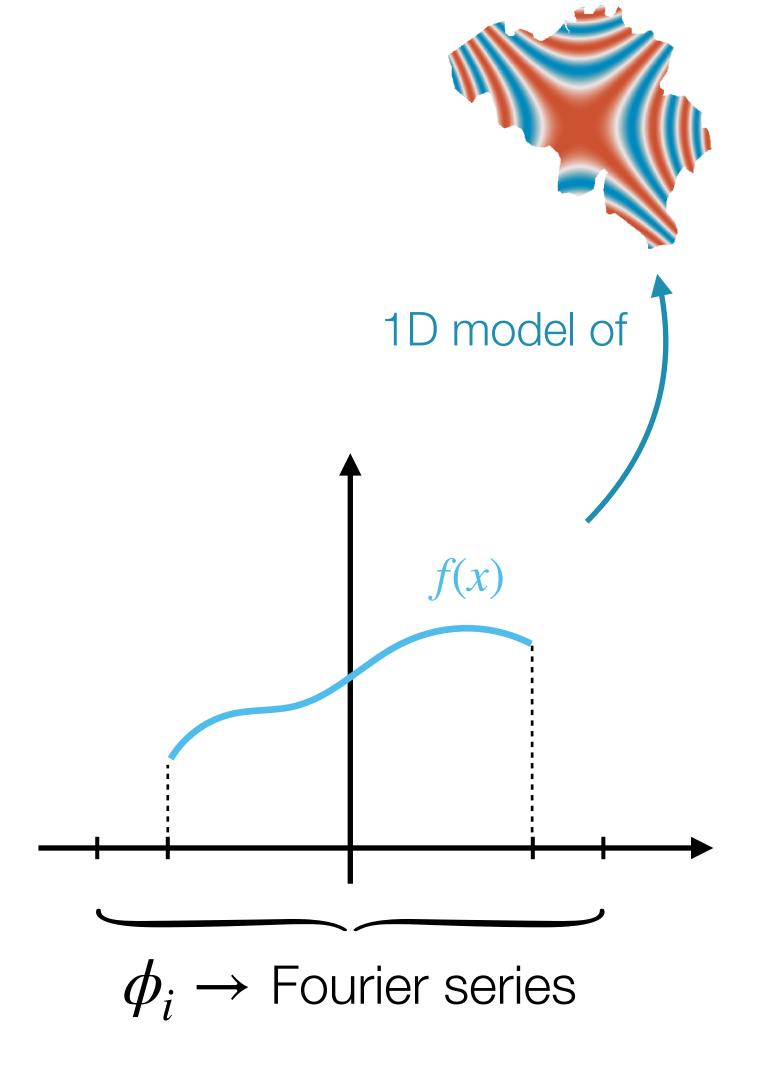


- = Fourier series restricted to a smaller domain
- = non-orthogonal basis

k(x) grows much larger near the boundaries than the middle \rightarrow we need to cluster points there

In reality, people compute stable least squares fits with a small number of <u>uniformly random</u> points

How is this possible?

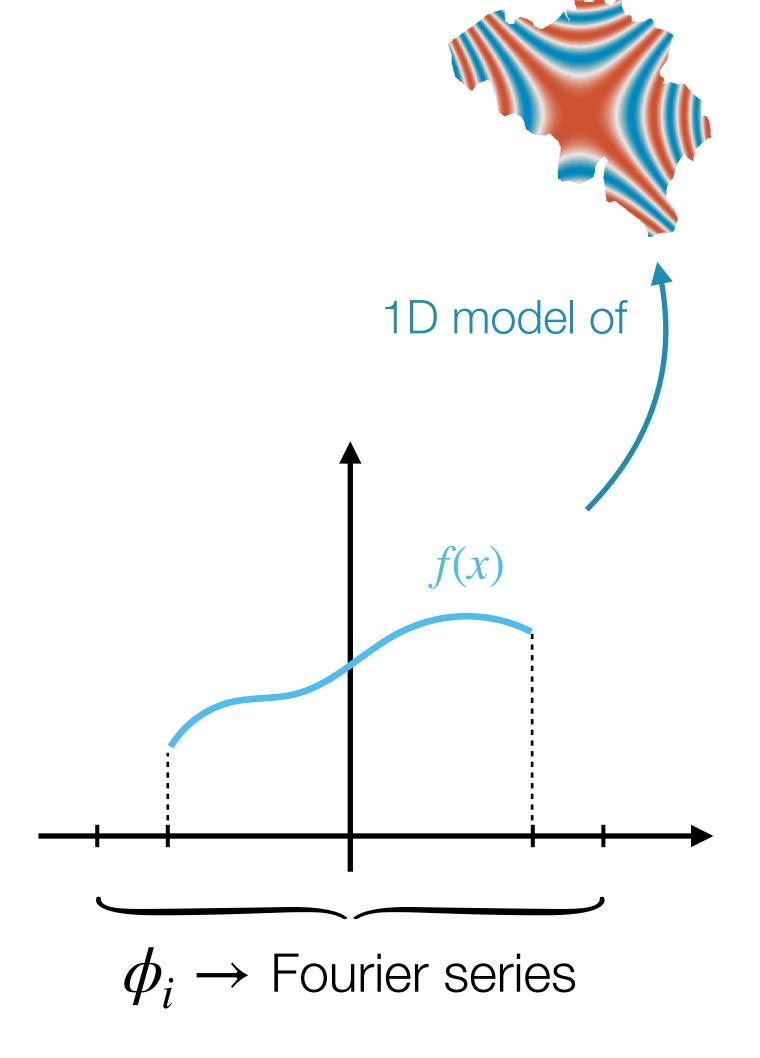


- = Fourier series restricted to a smaller domain
- = non-orthogonal basis

k(x) grows much larger near the boundaries than the middle \rightarrow we need to cluster points there

In reality, people compute stable least squares fits with a small number of <u>uniformly random</u> points

How is this possible? $\rightarrow k^{\epsilon}(x)$ is (approximately) uniform



- Approximation theory in finite precision
- An intuitive randomised sampling strategy
- Efficient sampling for non-orthogonal bases

For a given non-orthogonal basis $\{\phi_i\}_{i=1}^n$...

We can construct an efficient sampler ${\mathscr M}$ using

$$k^{\epsilon}(x) = \Phi(x) * (G + \epsilon^2 I)^{-1} \Phi(x)$$

For a given non-orthogonal basis $\{\phi_i\}_{i=1}^n$...

We can construct an efficient sampler ${\mathscr M}$ using

$$k^{\epsilon}(x) = \Phi(x) * (G + \epsilon^{2}I)^{-1} \Phi(x)$$

We can approximate the Gram matrix using

$$(G)_{i,j} = \langle \phi_i, \phi_j \rangle_{L^2} \approx \langle \mathcal{M} \phi_i, \mathcal{M} \phi_j \rangle_2$$

we don't know G...

For a given non-orthogonal basis $\{\phi_i\}_{i=1}^n$...

we don't know an efficient \mathscr{M} ...

We can construct an efficient sampler ${\mathscr M}$ using

$$k^{\epsilon}(x) = \Phi(x) * (G + \epsilon^{2}I)^{-1} \Phi(x)$$

We can approximate the Gram matrix using

$$(G)_{i,j} = \langle \phi_i, \phi_j \rangle_{L^2} \approx \langle \mathcal{M} \phi_i, \mathcal{M} \phi_j \rangle_2$$

we don't know G...

A "chicken or the egg" problem

For a given non-orthogonal basis $\{\phi_i\}_{i=1}^n$...

we don't know an efficient $\mathscr{M} \dots$

We can construct an efficient sampler ${\mathscr M}$ using

$$k^{\epsilon}(x) = \Phi(x) * (G + \epsilon^2 I)^{-1} \Phi(x)$$

We can approximate the Gram matrix using

$$(G)_{i,j} = \langle \phi_i, \phi_j \rangle_{L^2} \approx \langle \mathcal{M} \phi_i, \mathcal{M} \phi_j \rangle_2$$

we don't know G...

Brute force approach

(Dolbeault and Cohen, 2022)

- ullet Approximate G using a possibly huge number of uniformly random points
- Compute $m = \mathcal{O}(n \log(n))$ good samples for function approximation using Christoffel sampling
- ightharpoonup Good if the main cost lies in evaluating the functions to be approximated (i.e., approximating G is considered an "offline cost")

Refinement-based Christoffel sampling

(H. and Adcock, 2025)

Consider $m = \mathcal{O}(n \log(n))$ samples drawn from

 $d\mu = dx$ (uniform sampling)

(H. and Adcock, 2025)

Consider $m = \mathcal{O}(n \log(n))$ samples drawn from $d\mu = dx$ (uniform sampling)

$$(G)_{i,j} = \langle \phi_i, \phi_j \rangle_{L^2} \approx \langle \mathcal{M} \phi_i, \mathcal{M} \phi_j \rangle_2 = (\widetilde{G}^{(1)})_{i,j}$$

(H. and Adcock, 2025)

Consider $m = \mathcal{O}(n \log(n))$ samples drawn from

$$d\mu = w \, dx$$
 where $w \propto \Phi(x) * (\widetilde{G}^{(1)} + \epsilon^2 I)^{-1} \Phi(x)$

$$(G)_{i,j} = \langle \phi_i, \phi_j \rangle_{L^2} \approx \langle \mathcal{M} \phi_i, \mathcal{M} \phi_j \rangle_2 = (\widetilde{G}^{(1)})_{i,j}$$

(H. and Adcock, 2025)

to k^{ϵ}

Consider $m = \mathcal{O}(n \log(n))$ samples drawn from

$$d\mu = w \, dx$$
 where $w \propto \Phi(x) * (\widetilde{G}^{(1)} + \epsilon^2 I)^{-1} \Phi(x)$

$$(G)_{i,j} = \langle \phi_i, \phi_j \rangle_{L^2} \approx \langle \mathcal{M} \phi_i, \mathcal{M} \phi_j \rangle_2 = (\widetilde{G}^{(1)})_{i,j}$$

(H. and Adcock, 2025)

Consider $m = \mathcal{O}(n \log(n))$ samples drawn from

$$d\mu = w \, dx$$
 where $w \propto \Phi(x) * (\widetilde{G}^{(1)} + \epsilon^2 I)^{-1} \Phi(x)$

$$(G)_{i,j} = \langle \phi_i, \phi_j \rangle_{L^2} \approx \langle \mathcal{M} \phi_i, \mathcal{M} \phi_j \rangle_2 = (\widetilde{G}^{(2)})_{i,j}$$

(H. and Adcock, 2025)

Consider $m = \mathcal{O}(n \log(n))$ samples drawn from

$$d\mu = w \, dx$$
 where $w \propto \Phi(x) * (\widetilde{G}^{(2)} + \epsilon^2 I)^{-1} \Phi(x)$

$$(G)_{i,j} = \langle \phi_i, \phi_j \rangle_{L^2} \approx \langle \mathcal{M} \phi_i, \mathcal{M} \phi_j \rangle_2 = (\widetilde{G}^{(2)})_{i,j}$$

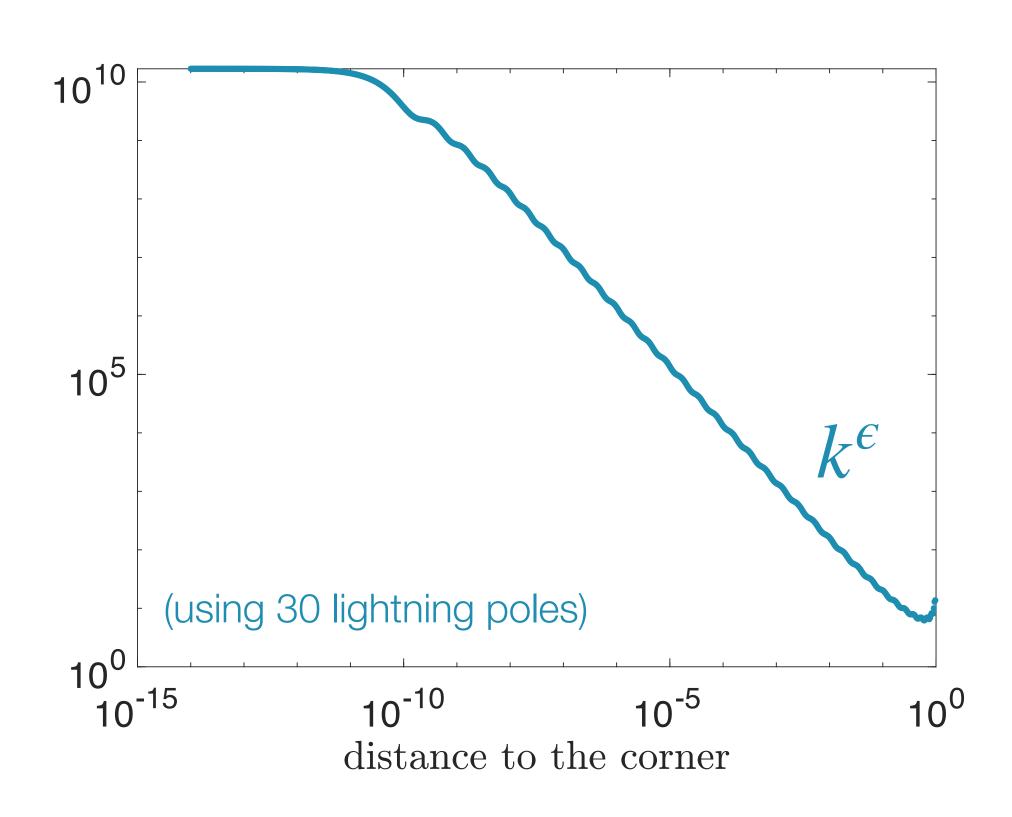
(H. and Adcock, 2025)

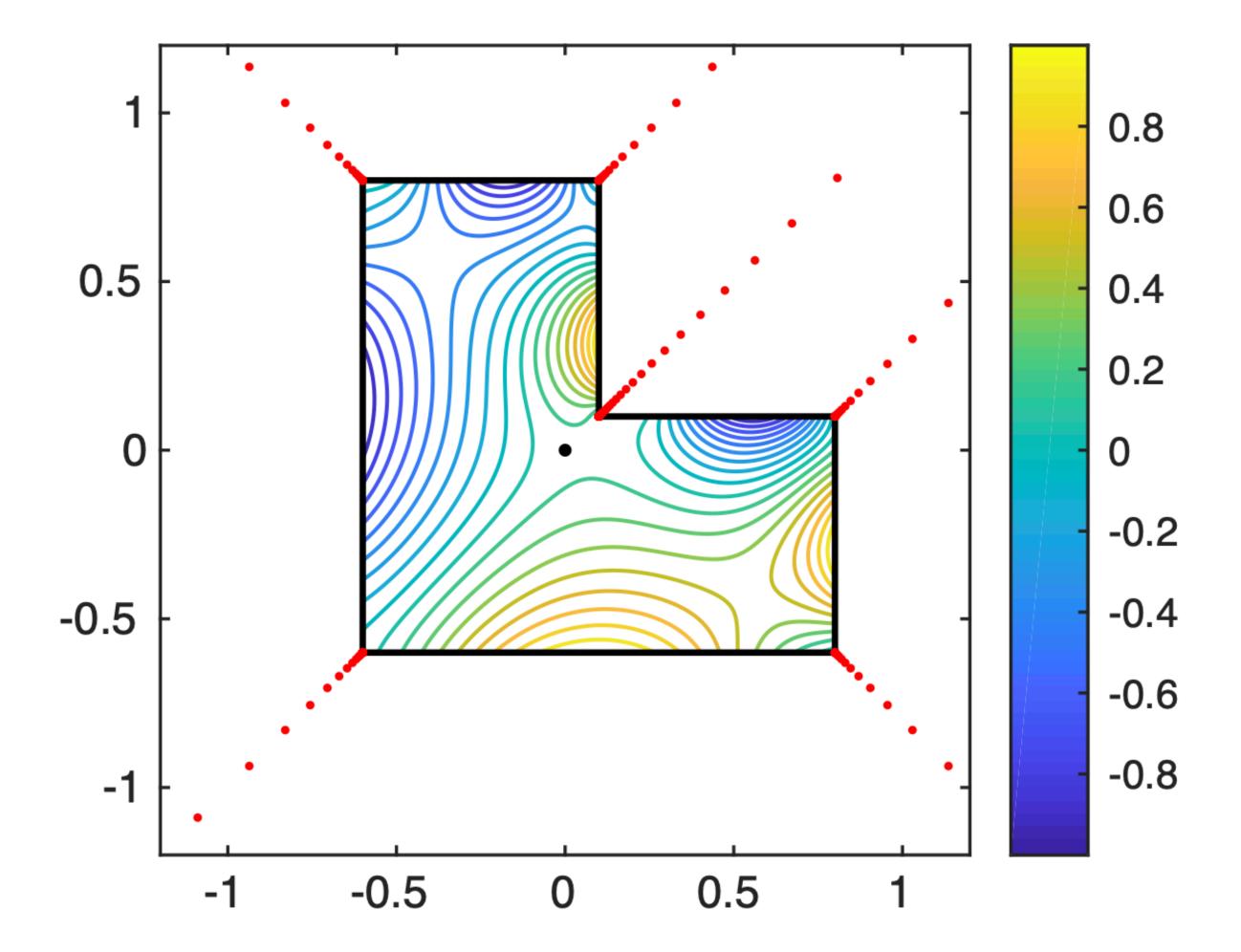
iteration I:

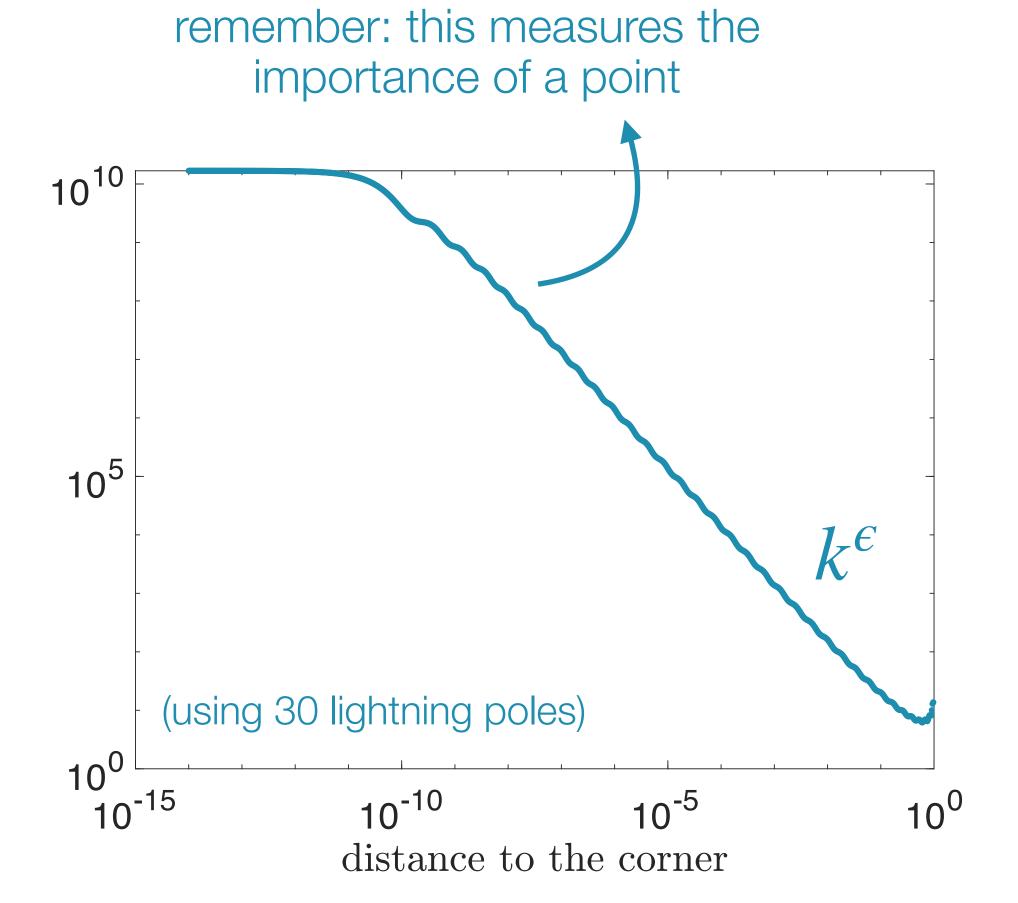
Consider $m = O(n \log(n))$ samples drawn from

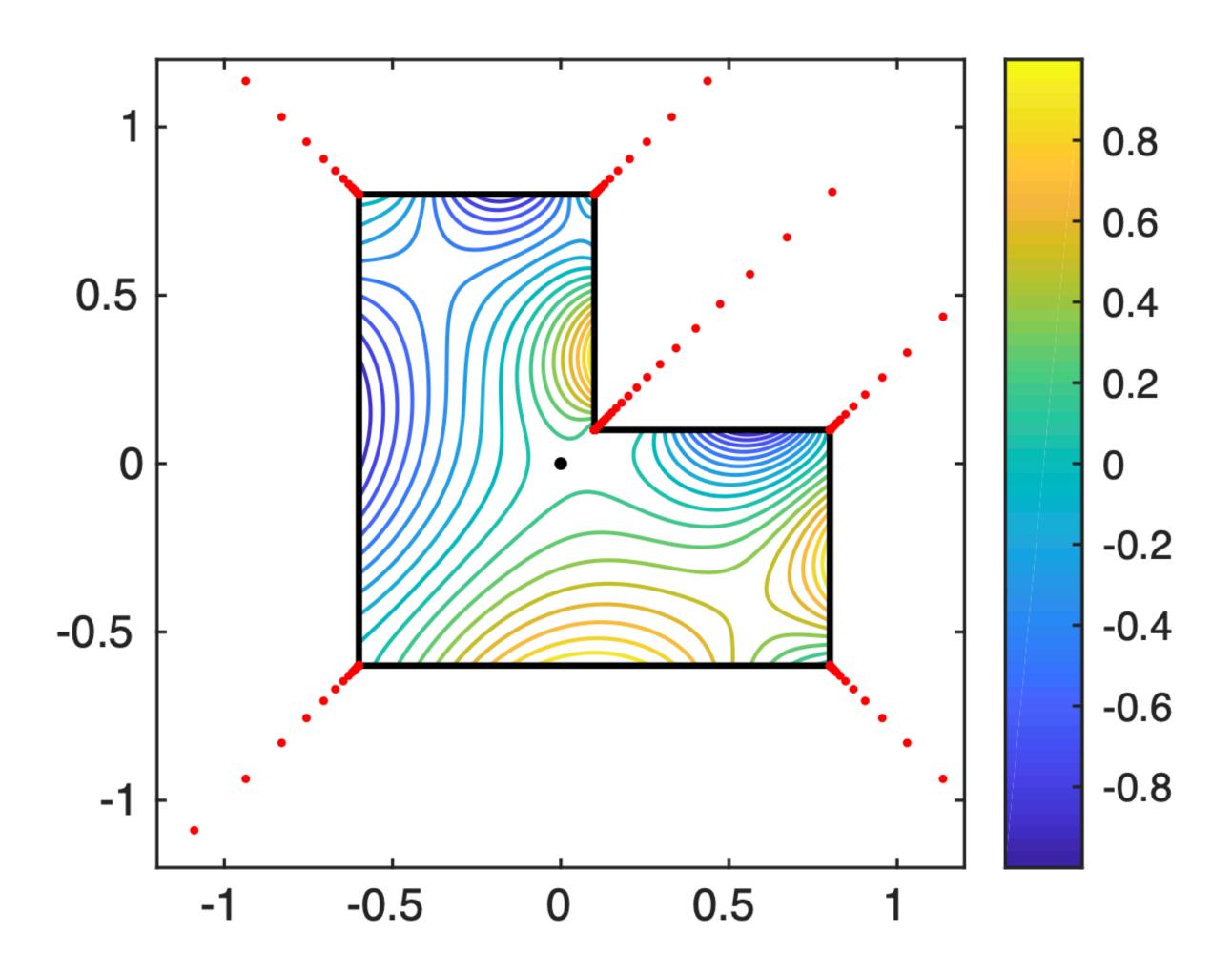
$$d\mu = w \, dx$$
 where $w \propto \Phi(x) * (\widetilde{G}^{(I-1)} + \epsilon^2 I)^{-1} \Phi(x)$

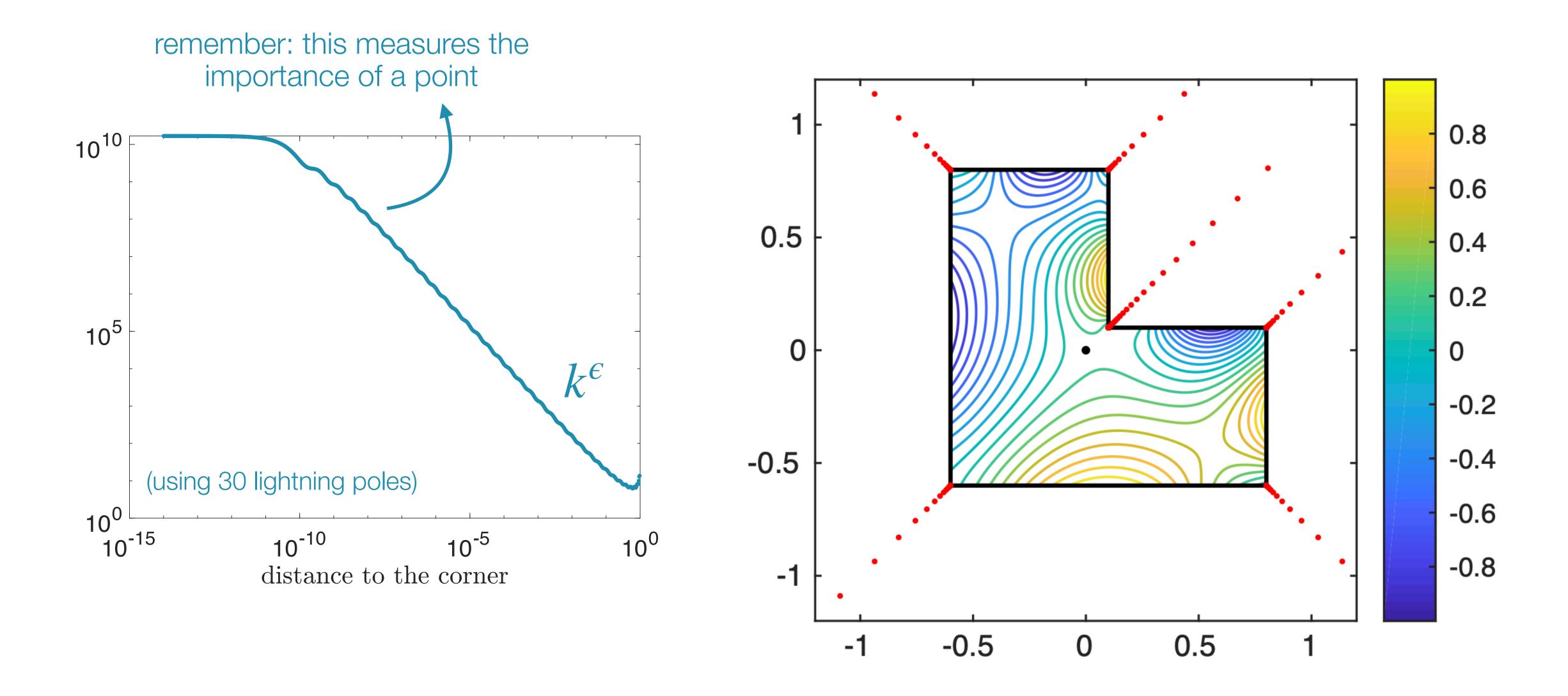
$$(G)_{i,j} = \langle \phi_i, \phi_j \rangle_{L^2} \approx \langle \mathcal{M} \phi_i, \mathcal{M} \phi_j \rangle_2 = (\widetilde{G}^{(I)})_{i,j}$$



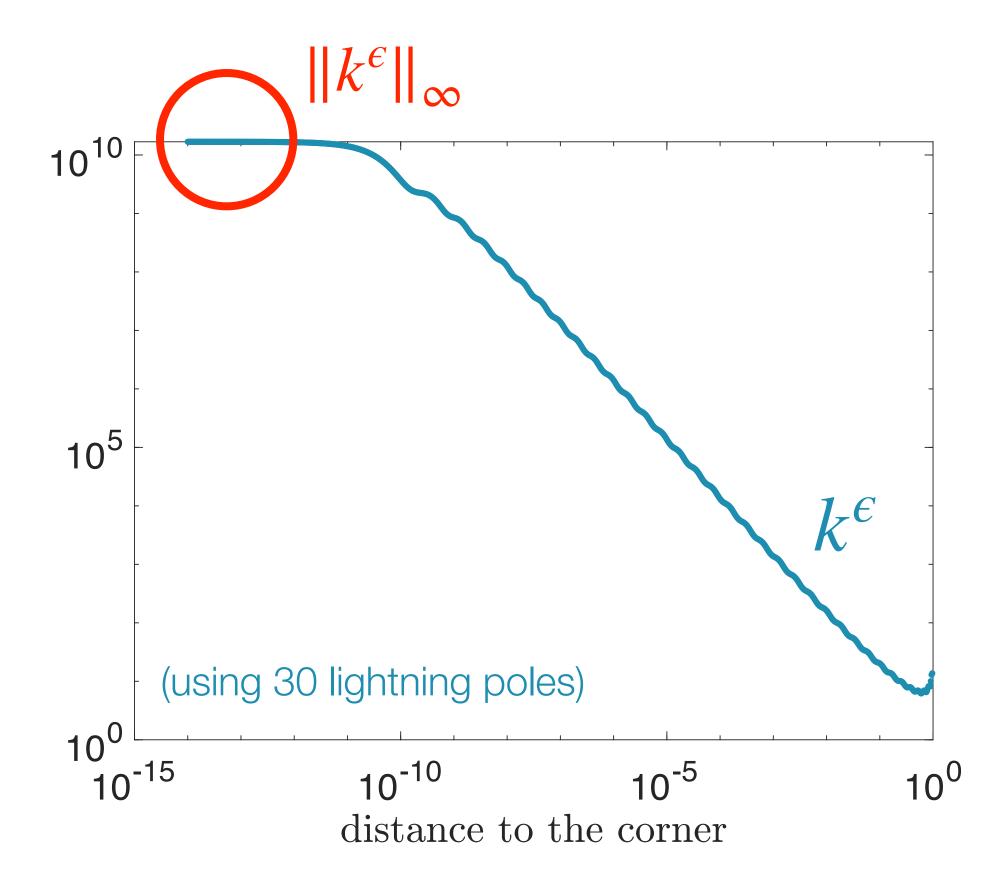






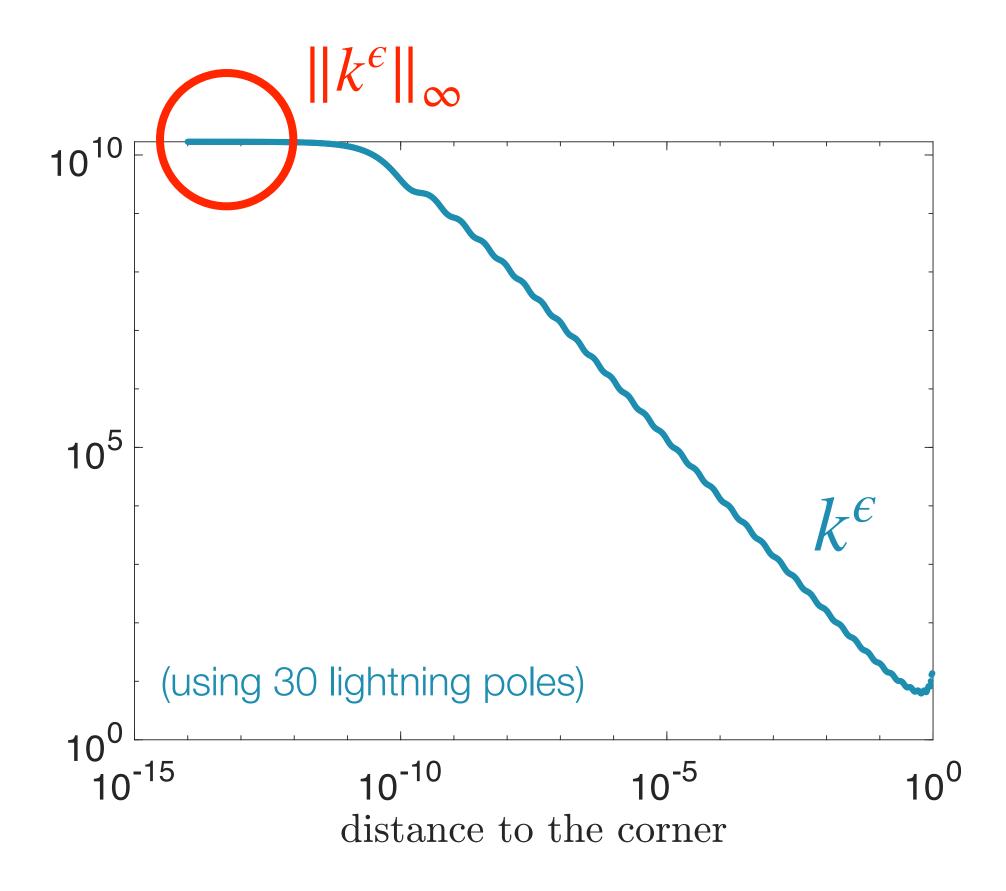


⇒ sample points should be exponentially clustered towards the corners



(Dolbeault and Cohen, 2022)

G should be computed using $\mathcal{O}(\|k^{\epsilon}\|_{\infty}\log(n))$ uniformly random sample points



(Dolbeault and Cohen, 2022)

G should be computed using $\mathcal{O}(\|k^{\epsilon}\|_{\infty}\log(n))$ uniformly random sample points

(H. and Adcock, 2025)

Converges in $\mathcal{O}(\log \|k^{\epsilon}\|_{\infty})$ iterations and uses $\mathcal{O}(n \log(n))$ samples per iteration

Non-orthogonal bases require approximation theory "in finite precision"

$$\left\| \left\| \mathcal{T} \widetilde{c}_d - f \right\|_{L^2(X)} \lesssim \min_{c \in \mathbb{C}^n} \left\| \left\| \mathcal{T} c - f \right\|_{L^2(X)} + \epsilon \|c\|_2 \right\|$$

Non-orthogonal bases require approximation theory "in finite precision"

$$\left\| \left\| \mathcal{T} \widetilde{c}_d - f \right\|_{L^2(X)} \lesssim \min_{c \in \mathbb{C}^n} \left\| \left\| \mathcal{T} c - f \right\|_{L^2(X)} + \epsilon \|c\|_2 \right\|$$

 The inverse Christoffel function quantifies the importance of each point for discrete approximation

Non-orthogonal bases require approximation theory "in finite precision"

$$\left\| \left\| \mathcal{T} \widetilde{c}_d - f \right\|_{L^2(X)} \lesssim \min_{c \in \mathbb{C}^n} \left\| \left\| \mathcal{T} c - f \right\|_{L^2(X)} + \epsilon \|c\|_2 \right\|$$

- The inverse Christoffel function quantifies the importance of each point for discrete approximation
- One can define a numerical Christoffel function that takes into account the effects of finite precision

Non-orthogonal bases require approximation theory "in finite precision"

$$\left\| \left\| \mathcal{T} \widetilde{c}_d - f \right\|_{L^2(X)} \lesssim \min_{c \in \mathbb{C}^n} \left\| \left\| \mathcal{T} c - f \right\|_{L^2(X)} + \epsilon \|c\|_2 \right\|$$

- The inverse Christoffel function quantifies the importance of each point for discrete approximation
- One can define a numerical Christoffel function that takes into account the effects of finite precision
- Refinement-based Christoffel sampling is an efficient algorithm for generating samples when using a non-orthogonal basis

References

Herremans, A. & Huybrechs, D. (2025). **Sampling theory for function approximation with numerical redundancy.** *preprint*, arXiv:2501.07470.

Herremans, A. & Adcock, B. (2025). **Refinement-based Christoffel sampling for least squares approximation in non-orthogonal bases.** *preprint*, arXiv:2510.08461.

Herremans, A., Huybrechs, D., & Trefethen, L. N. (2023). **Resolution of singularities by rational functions.** *SIAM J. Numer. Anal.*, 61(6), 2580-2600.

More on the influence of finite precision

Adcock, B. & Huybrechs, D. (2019). Frames and numerical approximation. SIAM Rev., 61(2), 443-473.

Adcock, B. & Huybrechs, D. (2020). Frames and numerical approximation II: generalized sampling. J. Fourier Anal. Appl., 26(6), 87.

More on Christoffel sampling

Cohen, A. & Migliorati, G. (2017). Optimal weighted least-squares methods. SMAI J. Comput. Math., 3, 181-203.

Dolbeault, M. & Cohen, A. (2022). Optimal sampling and Christoffel functions on general domains. Constr. Approx., 56(1), 121-163.

More on the example

Gopal, A. & Trefethen, L. N. (2019). Solving Laplace problems with corner singularities via rational functions. SIAM J. Numer. Anal., 57(5), 2074-2094.