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can be arbitrarily ill-conditioned  
for non-orthogonal  

(columns = polynomials + poles)
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cond(A) ≳ 1016



Non-orthogonal bases

incorporating expert  
knowledge on f

approximating on 
irregular domains

(Matthysen and Huybrechs, 2018), (Barnett and Betcke 2008), (Gopal and Trefethen, 2019)

adaptive basis viewpoint 
of neural networks

Trefftz methods 
for solving PDEs
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point here!
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(Cohen and Migliorati, 2017) 
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⊤
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(Dolbeault and Cohen, 2022) 

• Approximate  using a possibly huge number of uniformly random points 

• Compute  good samples for function approximation using 
Christoffel sampling 

 Good if the main cost lies in evaluating the functions to be approximated 
     (i.e., approximating  is considered an “offline cost”)

G

m = 𝒪(n log(n))

→
G

Brute force approach
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Approximate the Gram matrix 

(G)i,j = ⟨ϕi, ϕj⟩L2 ≈ ⟨ℳϕi, ℳϕj⟩2 = ( G̃ (I))i,j

Consider  samples drawn from 

 where  

m = 𝒪(n log(n))

dμ = w dx w ∝ Φ(x)*( G̃ (I−1) + ϵ2I)−1Φ(x)

iteration : I

Refinement-based Christoffel sampling

(disclaimer: this is a slight simplification)
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• Non-orthogonal bases require approximation theory “in finite precision” 

• The inverse Christoffel function quantifies the importance of each point for 
discrete approximation 

• The Christoffel function is also influenced by finite precision when using a 
non-orthogonal basis 

• Refinement-based Christoffel sampling is an efficient algorithm for generating 
samples when using a non-orthogonal basis

Conclusions

 𝒯c̃d − f
L2(X)

≲ min
c∈ℂn

𝒯c − f
L2(X)

+ϵ∥c∥2
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