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¢; and ¢; are indistinguishable from a point of view
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Numerically redundant sets

span a lower dimensional space when analysed rather than analytically

This Is equivalent to: the singular values of the synthesis operator

n
g,. C"—>H, CI—>26‘1¢1-
i=1

satisfy o.. <€

n machgmax

You recognise this if: you have plenty of data on f yet the system of equations to

compute coefficients c¢ is ill-conditioned anyway



Numerically redundant sets

offer a lot of flexiblility

iIncorporate knowledge on f

approximate on irregular domains by combining / weighting bases

left: (Matthysen and Huybrechs, 2018) , right: (Gopal and Trefethen, 2019)
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> The ugly news - regularization

> The good news - less data




> The bad news - slower convergence




approximation error

what you expect analytically

>

I number of basis functions

the basis becomes
numerically redundant




Achievable accuracy

On a computer, the basis functions ¢, are perturbed to
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Achievable accuracy

On a computer, the basis functions ¢, are perturbed to

best approximation error in span(¢,) inf (H f—9 nC”)
ceC”

» the numerical accuracy depends on the norm of the coefficients ||c||,

» the difference is only significant if &, has small singular values
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Convergence guarantees

Assume {¢;}'_, C {¢;}.2, and f € span({¢;}.2,), then f = i a.¢; and
i=1

orthonormal basis Riesz basis
a 1S unigue a 1S unique
2 2 2
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sulbsequence Is again an
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Riesz basis

(overcomplete) frame

a IS not unigue
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Convergence guarantees

Assume {¢;}'_, C {¢;}.2, and f € span({¢;}.2,), then f = i a.¢; and
i=1

orthonormal basis Riesz basis (overcomplete) frame
a 1S unique a IS unigue a 1S not unigue
2 . 2 2
lall, = [I/]] Allalls < A1 £ Bllall; da : Allal|5 < |Ifl] < Bllall5

T'he existence of bounded coefficients {q;}:2, guarantees convergence to €y5ch



> The ugly news - regularization




singular values of the
system of equations

€mach

what you expect analytically

J
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Backward stability

We ook tor coefficients ¢ that minimize
|Ac — bl|, with (A); ; = [(¢;) and (D); = [(f)

where {/;}'_, are linear sampling functionals
Numerical algorithms guarantee to compute

6’ — arg min H(A -+ AA)C — (b + Ab)Hz where ||A - || S €machll - Il2

such that

|A¢ = bll, < inf [lAc = I, + emach (IIAlLUNIENL + liclly) + 1111,)



Backward stability

For Als
heavily ill-conditioned and ||c||, can be huge!

l

|A¢ = bll, < inf ||Ac = bl + emach (IAIL(IENL + llelly) + 1215)



£*-reqularization

f we penalize the norm of the coefficients
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£*-reqularization

f we penalize the norm of the coefficients

. 2
min ||[Ac — bH%+€2HCH2 where € ~ €machllAll»
C

then backward stable algorithms guarantee

|Ac — b||, S 1t |[Ac — b||, + €l|c]l, + emachllPll»
C

Remember: the equals




Common strategies

singular values of the
system of equations

£ *-regularization
» Tikhonov regularization

» truncated singular value decomposition (TSVD)

! standard routines such as Matlab’s backslash
regularize under the hood




Common strategies

singular values of the
system of equations

£ *-regularization
» Tikhonov regularization

» truncated singular value decomposition (TSVD)

Numerical orthogonalization on a dense grid {tj}j’”’”‘= )

d.(t) ... @, (1)
(I'+ AT) = OR where T= | ;| and |AT] S €macnll Tl
$.(t,) ... @)



> The good news - less data




required numlber
of samples

what you expect analytically

I number of basis functions

the basis becomes
numerically redundant
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Analytical behaviour

: y) : y) 212
¢ = argmin |7 ,x —fII2 c = argmin |7 ,x — fll7, + €*|1x]3
X X
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Error analysis

We discretize using the sampling operator #,, : f— {LHYE, defining | - I, = |4, - |l

Analytical behaviour

: y) : y) 212
¢ = argmin |7 ,x —fII2 c = argmin |7 ,x — fll7, + €*|1x]3
X X

then we obtain then If

_ )l |, . _ la, ],

|7 c—fll < | 1A inf |7, x — f]| |7 c—fll < | 1A int ||, x — fl| + el|x]|,

An,m iy Arez,m iy

where where

AplVI> < IVIZ, Vv € span({d}) AL T 1 < n%xu% Vx € C"
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Discretization condition

Analytical behaviour

Ay VIP < VI, Vv € span({;})

< An,mGn < Gn,m 4_\

(Gn)i,j — <¢i9 ¢]> and (Gn,m)i,j — <ﬂm¢i’ %m¢j>2
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Discretization condition

Analytical behaviour

Ay VIP < VI, Vv € span({;})

ONB
& An,ml < Gn,m

» Independent of the spanning set {¢;};: we
can use an ONB for the analysis s.t. G, = 1




Discretization condition

Analytical behaviour

An,mHVHZ < Hvl\,%,l, Vv € span({¢;,},) A,f,m\lf/”anz < I\P/”nxu,%,l + ezuxH%, Vx e C"
S A, <GNP & AL,G, <G, +€°l
» Independent of the spanning set {¢;}. : we » Dependent on the spanning set { ¢}

can use an ONB for the analysis s.t. G, = 1



Discretization condition

Analytical behaviour Numerical behaviour
A VIZ < VI, Vv € span({g;}) As T X172 < N T xlly, + €°llxll3, Vx e C
<A, <GP & AL,G, <G, +€°l
» Independent of the spanning set {¢;}.: we » Dependent on the spanning set { ¢}

can use an ONB for the analysis s.t. G, = 1

How do we find sampling functionals

that satisfy these norm inequalities?



Christoffel sampling

Analytical behaviour

2 2 2 2 2 2
A VIR < VIR, Vv € span({d;},) A NT X2 < T 22+ €2llx]|3, Vxe
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Christoffel sampling

Analytical behaviour

2 2
A, V2 < VI, Vv € span({d;})) AS T 2 < 1T 2% + llx]2 Vxe T
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Christoffel sampling

Analytical behaviour

2 2 2 2
A, V2 < VI, Vv € span({d;})) AS T 2 < 1T 2% + llx]2 Vxe T
S A, <GNP & AL,G, <G, +€°l

A, close 1o 1 w.h.p. when using

m > Cnlog(n)

pointwise random samples with probability
depending on

) =Y |

=1

\ the inverse Christoffel function /
continuous analogue of leverage scores



Christoffel sampling

Analytical behaviour

2 2 2 2 2 2
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Christoffel sampling

Analytical behaviour

2 2 2 2 2 2
A, V2 < VN2, YV € span({e;);) AS NT xl1? < 11T xlI% + €2lx]13, Vx e C”
S A, <GNP & AL,G, <G, +€°l
effective dimenzsion
A, close 1o 1 w.h.p. when using A, close 1o 1 w.h.p. when using ne = Z; 0_2(1 >
m > Cnlog(n) m > Cnlog(n®) /
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depending on depending on
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Christoffel sampling

Analytical behaviour

2 2 2 2 2 2
A, V2 < VN2, YV € span({e;);) AS NT xl1? < 11T xlI% + €2lx]13, Vx e C”

S A, <GNP & AL,G, <G, +€°l

A, close 1o 1 w.h.p. when using A, close 1o 1 w.h.p. when using
m > Cnlog(n) m > Cnlog(n®)
pointwise random samples with probability pointwise random samples with probability
depending on depending on
n 2
k()= ) |ux)|? e — N ' >
Zl=1 kn{X) — Zizl (fiz n 62 ‘MI(X)‘

continuous analogue of ridge leverage scores



Deterministic sampling
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Deterministic sampling

Approximation of fix) = J,,(x + 1) 1

x2+1

on [-1,1] using the basis

{p,-(X)}?Ql U {w(x) p,-(x)}?g1 with w(x) = \/ x4+ 1

analytical analysis
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Deterministic sampling

Approximation of fix) = J;,(x + 1) 4 on [-1,1] using the basis

x2+1

(P} U {(w@) p0)}R with w(x) =+/x+ 1

# exponentially clustered points

analytical analysis experimental results
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Random sampling

Approximation on [—0.3,0.3] using a Fourier extension on [—0.5,0.5]

¢, = exp(2mixk), - -1 <k<m-1)/72
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k this Is a subsequence of an overcomplete frame!



sy
Random sampling \\\\X@“

Approximation on [—0.3,0.3] using a Fourier extension on [—0.5,0.5]

¢, = exp(2mixk), —n—-—1D/12<k<(n=-1)/2

When using uniformly random samples, the required number of samples equals

m > Cllk,||, log(n) s
(analytically)



Random sampling

m > C||k, ||, log(n) VS
(analytically)

Ik, ]l = O(n%)
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Abstract

The study of numerical rounding errors is often greatly simplified in the analytical treatment
of mathematical problems, or even entirely separated from it. In sampling theory, for instance,
it is standard to assume the availability of an orthonormal basis for computations, ensuring that
numerical errors are negligible. In reality, however, this assumption is often unmet. In this paper,
we discard it and demonstrate the advantages of integrating numerical insights more deeply into
sampling theory. To clearly pinpoint when the numerical phenomena play a significant role, we
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Sampling Theory for Function Approximation

_|_ IMOore |n the paper (OP arX|\/) with Numerical Redundancy
+ | haven't talked about fast solvers et i g
+ I'm working on efficient Christoffel samplers

The study of numerical rounding errors is often greatly simplified in the analytical treatment
of mathematical problems, or even entirely separated from it. In sampling theory, for instance,
it is standard to assume the availability of an orthonormal basis for computations, ensuring that
numerical errors are negligible. In reality, however, this assumption is often unmet. In this paper,
we discard it and demonstrate the advantages of integrating numerical insights more deeply into
sampling theory. To clearly pinpoint when the numerical phenomena play a significant role, we




